
R EGU L A R PA P E R

Pragmatic Verification and Validation of Industrial
Executable SysML Models

Benedek Horváth1,2 | Vince Molnár3 | Bence Graics3

| Ákos Hajdu3 | István Ráth1 | Ákos Horváth1 |
Robert Karban4 | Gelys Trancho5 | Zoltán Micskei3

1IncQuery Labs cPlc., Budapest, Hungary
2Johannes Kepler University Linz, Linz,
Austria
3Deptartment of Measurement and
Information Systems, Budapest University
of Technology and Economics, Budapest,
Hungary
4Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, USA
5TMT International Observatory LLC,
Pasadena, CA, USA
Correspondence
Benedek Horváth, IncQuery Labs cPlc.,
Budapest, Hungary
Email: benedek.horvath@incquerylabs.com
Funding information
European Union’s Horizon 2020 research
and innovation programme under the
Marie Skłodowska-Curie grant agreement
No 813884; NRDI Fund of Hungary,
financed under the
2019-2.1.1-EUREKA-2019-00001 funding
scheme.

Abstract
In recent years, Model-Based Systems Engineering (MBSE)
practices have been applied in various industries to design,
simulate and verify complex systems. The verification and
validation (V&V) of such systems engineering models is cru-
cial to develop high-quality systems. However, this is a chal-
lenging problem due to the complexity of the models, and
semantic differences in how different tools interpret the
models, which can undermine the validity of the obtained
results if they go undiscovered. To address these issues,
we propose (i) a subset of the SysML language for which
the practical semantic integrity of tools can be achieved,
and (ii) a cloud-based verification and validation framework
for this subset, lifting verification to an industrial scale. We
demonstrate the feasibility of our approach on an industrial-
scale model from the aerospace domain, and summarize
the lessons learned during transitioning formal verification
tools to an industrial context.
K E YWORD S

MBSE, SysML, formal verification, model checking, hidden formal
methods

1

2 Benedek Horváth et al.

1 | INTRODUCTION

Model-Based Systems Engineering (MBSE) [49] is a widely used discipline to design and implement complex systems.
MBSE promotes models from static documents to executable first-class citizens [67], connecting the steps of the
whole engineering lifecycle with explicit traceability information: starting from requirements through design, simula-
tion and verification, until implementation and reporting [65]. A recent trend inMBSE is moving from standalone tools
to integrated environments connecting various tools working on linked models. OpenMBEE [43] is a community pro-
viding core components to realize the vision of connected models and environments, which are used by organizations
such as the European Southern Observatory (ESO) or NASA Jet Propulsion Laboratory (JPL).
Context
The NASA Jet Propulsion Laboratory (JPL) develops complex robotic space missions. JPL has started to adopt MBSE by
transforming its document-centric engineering processes to integrated, collaborative model-based practices, which
have been already used in several flight missions, e.g., the Mars 2020 Perseverance rover. JPL missions incorporate
a wide variety of languages and tools. To support its engineers, JPL offers common engineering environments that
connect these tools andmodels through cloud-based services. This paper is concernedwith themodels and ecosystem
around the Systems Modeling Language (SysML) [57].
Motivation
SysML supports the architectural design and analysis by providing structural and executable behavioral models [60,
40, 41]. Requirements are usually validated by simulating operational scenarios on SysML state machines and activity
diagrams. However, as these SysML models are complex, simulating a handful of traces is usually not enough to
find subtle design errors in the models. Many organizations have used model checking [10] – an automated formal
verification technique that systematically traverses execution paths in the model – to verify design models [23, 22].
The widespread adoption of formal methods is still limited due to two main reasons. First, model checkers usually
require expertise in formal methods (e.g., in aligning the semantics of formal and engineering models). Second, even
modern tools require a significant amount of computing resources, which may not be easily available on end-user
devices, e.g., workstations or mobile appliances.
Objectives
Based on the motivations above, we aim to extend verification and validation (V&V) capabilities for SysML models in
the OpenMBEE ecosystem. Our goal is to propose an “off-the-shelf”, scalable, and multi-user framework that checks
properties of the model and offloads the resource-intensive verification tasks to cloud-based services. Recognizing
the difficulties in realizing an ideal solution, we define the long-term goals as (1) operating at an industrial scale (e.g.,
hundreds of actions in a statemachine), (2) supporting frequently usedmodeling constructs (e.g.,, communicating state
machines), and (3) being deployable in an enterprise environment as a common service used by teams of engineers.
Method
Driven by these goals, we conducted several interviews and focus group meetings with subject matter experts from
several organizations during 2020. As a result, we identified a prioritized list of objectives and modeling language
elements that need to be supported. We reviewed the relevant fUML and PSSM specifications [58, 56] to reveal
potentially challenging elements with respect to V&V. We studied the modeling practices and patterns employed
by engineers. We worked with one of the largest open-source SysML model, the model of the Thirty-Meter Tele-

Benedek Horváth et al. 3

scope (TMT) [11, 37], which applies the practices of the OpenSE Cookbook [39]. We experimented with industry-
leading SysML tools to simulate these models. As a consequence, we adopted an attitude of favoring practicality and
performance over completeness and precision: certain elements are not supported because they unnecessarily com-
plicate verification, the semantics of certain elements are simplified to the most common interpretations, and thus
the explorable state space is reduced. We counter the reduction in completeness with detailed feedback through
verification-specific validation rules. This process was supported by iteratively building prototypes that eventually
grew into a cloud-based framework that can validate and verify SysML models using the selected subset of elements.
Contributions
We make the following contributions towards the V&V of industrial executable SysML models:

• We recommend a pragmatic subset of SysML behavioral modeling elements (state machines and activity dia-
grams) that can be validated and verified even at an industrial scale (Section 3).

• We develop a V&V workflow and cloud-based framework based on IncQuery Suite [29] for model valida-
tion and transformation, using the Gamma Framework [52] as an intermediate format for the Theta [62] and
UPPAAL [5] model checkers. The framework enables verification to be used as a common service by many
users on a scalable platform (Section 4).

• We demonstrate the workflow on the TMT model in an illustrative multi-user scenario (Section 5).
• We summarize the key lessons learned while developing the V&V workflow (Section 6).
In this paper, we extend our initial prototype [33] with both theoretical (a pragmatic subset of the SysML language,

supporting activity diagrams describing detailed actions) and engineering (moving to a new architecture backed by
Kubernetes) contributions that made it possible to verify a SysML model an order of magnitude larger than in the
previous workshop paper. This is an important milestone, as real-world projects are generally not accessible until one
can show convincing results – posing a significant challenge in developing such solutions. By reaching this level of
maturity through the collaboration of a diverse team, the possibility of experimenting with confidential models of the
industry finally opens up.
Lessons learned
This paper reinforces the lessons learned from successful academic-industrial collaborations [25, 21] in the context of
MBSE and V&V.

1. Supported modeling elements are constrained by practice, not convenience: constructs frequently used by
engineers cannot be ignored.

2. Single-user desktop applications are not applicable in industrial settings: requirements like access control, multi-
user jobs, and deployability are not just optional (even though they are not “novel”).

3. A tool must be useful for the end-users, not theoretically complete: it is better to successfully discover one
actionable issue and ignore others than to fail while trying to find all of them (even if this is a “limitation”).

2 | INDUSTRIAL CONTEXT

Model-Based Systems Engineering (MBSE) is a widely used discipline to design and implement complex systems in the
aerospace and other domains [38]. NASA JPL has approximately 4000 engineers developing and deploying complex

4 Benedek Horváth et al.

cyber-physical and aeronautical systems. JPL employs multi-paradigm modeling using SysML, Matlab/Simulink and
Python. A single vendor rarely possesses the functionality needed for the whole modeling lifecycle, thus products of
multiple vendors are integrated into a toolchain [42].

Recently, many organizations have started to utilize cloud-based, collaborative environments to integrate modeling
and analysis tools. Such platforms provide various viewpoints to the different stakeholders and keep system models
consistent and traceable. In order to achieve the interoperability of such tools in a cloud-based environment, they
should provide a web-based API and leverage technologies that are used to ease the deployment of the applications
to the cloud, e.g., Kubernetes1. A prime example is the open-source OpenMBEE project2, an open environment for
connected models. NASA JPL is a member of the project among many other companies and organizations in the
aerospace domain, e.g., Boeing, ESO. OpenMBEE includes a model repository (MMS), model authoring tool adapters
for syncing models to the repository (MDK), and a web-based environment to interact with views and documents
generated from the model (View Editor), as depicted in Figure 1. Although it supports the design phase with several
tools, there is no explicit tool support for verification and validation aspects in the ecosystem.

Modeling
tool

MMS

OpenMBEE

View
Editor

MDK

Validation

Verification

Missing
services

F IGURE 1 Open Model Based Engineering Environment (OpenMBEE) architecture.

Systems engineering in SysML is supported by several tools. Models are created for example in MagicDraw3 or
Cameo Systems Modeler4, and are versioned in central repositories (MMS or Teamwork Cloud5). Cameo Simulation
Toolkit (CST)6 is used to simulate models and validate timing or functional properties. Documents and reports are
generated by the ViewEditor, later to be consumed by other engineering teams. Implementation code is either created
manually or by code generation (e.g., with COMODO [3]).

The OpenSE Cookbook [39] collects modeling practices and processes proven to be useful in industrial practice.
Many organizations follow the Executable Systems Engineering Method (ESEM), emphasizing executable models to de-
liver high-quality systems. Textual requirements are formalized using constraints and parameters. System behavior
is modeled using state machines communicating through ports. The detailed behavior of states and transitions are
defined using activity diagrams. Operational scenarios can be defined as sequence diagrams, driving simulations to
obtain e.g., timing diagrams or other analysis results.

The largest, open-source, industrial-scale application of the OpenSE Cookbook design patterns is the Thirty-Meter
Telescope (TMT) [11]. Its objectives are to adopt the design principles used in aerospace flight missions at NASA JPL,
and to provide mass and power roll-up analysis by simulating the system design to validate the requirements [37].

1Cloud Native Computing Foundation. Kubernetes https://www.kubernetes.io
2Open Model Based Engineering Environment (OpenMBEE) https://www.openmbee.org
3Dassault Systèmes. MagicDraw https://www.nomagic.com/products/magicdraw
4Dassault Systèmes. Cameo Systems Modeler https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/
5Dassault Systèmes. Teamwork Cloud https://www.nomagic.com/products/teamwork-cloud
6Dassault Systèmes. Cameo Simulation Toolkit. https://www.3ds.com/products-services/catia/products/no-magic/cameo-simulation-toolkit/

https://www.kubernetes.io
https://www.openmbee.org
https://www.nomagic.com/products/magicdraw
https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/
https://www.nomagic.com/products/teamwork-cloud
https://www.3ds.com/products-services/catia/products/no-magic/cameo-simulation-toolkit/

Benedek Horváth et al. 5

(a) Composite system structure. (b) Block definitions.

(c) Behavior definitions.
F IGURE 2 A SysML model describing a simplified Spacecraft and Ground Station to illustrate the scope.

2.1 | Running example demonstrating industrial modeling practices

As a running example model in the paper, let’s consider the composite system of a simplified Spacecraft and Ground
Station model in Figure 2 based on OpenSE Cookbook. As soon as the Ground Station is in Operation, it notifies
the Spacecraft to Start sending Data. The station counts and forwards the incoming data packets via its Status
port. The Spacecraft is waiting in the Idle state until it receives a Start signal from the station to start sending data
in packets. Data transmission consumes 1% of battery power per packet, and if the battery level falls below 80%,
ongoing data transmission is paused until a full recharge. Several properties can be formulated about the behavior of
the system. For illustrative purposes, let’s consider that the Spacecraft7
(a) only starts transmitting when receiving a Start signal,
(b) never transmits when the battery is below 80% and the Ground Station has already received at least 20 packets.

While property (a) could be checked in principle by reviews or validation rules, property (b) is much harder as we
have to consider all paths in the model. A handful of executions can be explored in a simulator (e.g., CST), however
engineers could easily get lost if finding a trace requires solving complex conditions or ordering concurrent behaviors.

These properties can be captured as reachability properties on state machines of the composite system. A reach-
ability property describes a state configuration with predicate logic (that can refer to state nodes and state variables).
A reachability property can be checked: a model checker can compute whether a state configuration matching the
property can be reached from the initial state or not. A requirement may be derived from a reachability property by
specifying whether the state configuration is desirable (a liveness requirement) or undesirable (a safety requirement).
A liveness requirement is satisfied by a system if there exists an execution path (a witness) that leads the system into

7These properties were derived to illustrate the challenges during verification.

6 Benedek Horváth et al.

a matching configuration. In contrast, a safety property is violated if there is such an execution (which in this case is
called a counterexample). Note that a safety requirement can be converted into a liveness requirement by negating
both the description of the state configuration and the result of model checking.

A SysML sequence diagram can be used as a surface notation to define a reachability property. The diagram
consists of Lifelines representing the Part Properties of the composite Block it describes. Each Lifeline can contain
several State Invariants. The property, illustrated by Figure 3, corresponds to property (b), describing a configuration
where the Transmitting state of the Spacecraft is active, the battery level is below 80%, the Ground Station is in
the Receiving state and has already received at least 20 packets.

F IGURE 3 A Sequence Diagram describing the reachability property (b).

2.2 | V&V of industrial SysML models: State of the art

The correctness of systems engineering models is a crucial aspect in the aerospace and astronomy domains, due to
the large design, development and operational costs, the longevity and the safety critical properties of the systems.
There are several techniques for validating the designs [23, 22]. During manual reviews, engineers inspect the models
and documentation. Static validation rules are used to check the structural consistency of the models. Simulations
are used to evaluate executions of the behavior or run test cases. The primary result of simulation is one or more
execution traces, which can be used to analyze different qualitative and quantitative properties.

Testing and simulation are proven methods, but they depend on the engineer’s expertise, and in case of complex
models, have a chance of missing problems (partly mitigated by test design methodologies). This has inspired research
in formal methods to support verification with complementary approaches that reduce this chance by systematic,
(semi-)automated reasoning. One such approach is model checking, which can be viewed as an automated and highly
optimized exploratory simulation driven by a declaratively specified goal. Traditionally, this goal is to demonstrate the
satisfaction or violation of a requirement with a suitable execution (witness). In case of a reachability property, the
goal is to look for traces that reach a state configuration specified by the property. Therefore, model checking can
be used to enhance a set of hand-made operational cases with machine-assisted exploration of hard-to-find corner
cases. Note that from the engineer’s point of view, the result of model checking should be an execution trace similar
to the result of simulation or testing, which can be used to analyze the behavior. An example for this practice is NASA
JPL’s usage of Java Pathfinder [28] and Spin [32] to verify properties on code generated from state machines [23].

Tool integration is an important aspect in the applicability of model checking in industrial settings. Typically,
engineers work with feature-rich tools that support the authoring of high-level, generic and flexible models, while
model checkers are often single-user applicationswith a lot of configuration options and amathematically precise, low-
level input language. This gap is probably themost dominant obstacle in the industrial adoption of results accumulated
during decades of formal methods research.

Benedek Horváth et al. 7

Given this task of integrating (primarily academic) formal verification tools with industrial authoring environments,
we can identify several levels:

1. The design models and formal models are built separately by a group of specialists (e.g., [20]). Traceability can
be added manually.

2. The formal models and traceability information are derived from the design models via automated model trans-
formation (e.g., [44]). Results are still evaluated by experts familiar with the formal model and tool.

3. In addition to automatic generation, results are also automatically back-annotated into the design model [30],
which allows the complete workflow to be executed from the design environment.

An orthogonal aspect is how much of the language elements is supported by the verification workflow. An ideal
solution would reach level 3. for the whole language – in our case, SysML. Since this is extremely challenging due to
the richness and flexibility of the language, most solutions deal with only a fragment of the modeling elements.

2.3 | Objective and challenges

We defined the vision to extend an industrial SysML-based engineering environment with capabilities to check prop-
erties defined over state machine models using formal verification techniques, with the following objectives:

1. The approach shall check reachability properties over executable SysML models to provide early feedback to
engineers in a language they are familiar with.

2. Verification shall be hidden and offloaded to cloud services supporting multiple model checkers.
3. The solution shall be integrated with OpenMBEE and support a reasonable subset of widespread modeling

practices.
4. The solution shall satisfy the entry conditions of typical enterprise deployments, i.e., multi-user and parallel

jobs, containerized environment, and access control.
Ourmain challengeswere that (1) there are subtle differences in how different tools and engineers interpret SysML

models or even the standard itself, (2) there is a significant gap between the models of computation of SysML models
and most formal languages, and (3) formal verification approaches generally do not scale to larger models.

We have started our collaboration to tackle these challenges in 2019, with the identification of the modeling
elements to be supported by an acceptable solution. In 2020, we implemented the first prototype presented in a
workshop paper [33]. In the autumn of 2020, we extended the prototype with support for activity diagrams and
communicating state machines, reaching a set of supported elements that is sufficient to tackle real-world models. In
2021, with major engineering efforts put into the optimization of the transformation and a technological upgrade to a
cloud-native architecture, the solution has been scaled to the TMT model and industrial deployment became feasible.

In this paper, we present the details of this journey. The prototype at its current state is sufficiently evolved to
serve as a demonstration that verification of industrial SysML models is feasible. The distinguishing feature of our
approach is that the heterogeneous team resulted in a healthy balance between academic and industrial interests
and constraints, driving the development towards the needs of end users while respecting the capabilities of existing
verification tools. We call the resulting compromise a pragmatic V&V approach for SysML.

8 Benedek Horváth et al.

3 | A PRAGMATIC V&V APPROACH FOR SYSML

3.1 | Challenges of verifying SysML models

SysML and UML semantics
Because SysML inherits many elements and semantics fromUML, in this chapter we explore SysML andUML together.
Both standards [57, 54] have been defined to ensure that the different tools in this workflow process models the same
way. However, standards are usually ambiguous because standardization needs to find a compromise between human
intelligibility and formal preciseness. This flexibility may lead to subtle differences in how the models are interpreted
by both stakeholders and tools. For example, a verification tool may return an execution trace that is not reproducible
by the simulator. To address this issue, several standards have been proposed as an extension to the base standards
(e.g., PSSM [56], PSCS [55], fUML [58]). These standards define a detailed operational semantics, capture some of the
known variations explicitly as semantic variation points, and contain test suites to demonstrate the expected behavior
of model elements. However, as the main parts of the standards are still semi-formal natural text, they still could not
completely eliminate ambiguity and specify every possible corner case.

To complement these standards, researchers have proposed to map UML/SysML to a formal analysis domain.
These formalizations differ in the types of supported elements: ranging from handful of elements in activity dia-
grams [47] and state machines [12] to rich feature support for UML state machines [48]. The approaches also use
several alternatives for themathematical basis: e.g., Petri nets [34], PROMELA [45], CML [47] or Kripke structures [46].
However, these formalizations are usually not complete [12].

According to our experience, in an industrial setting further practical perspectives needs to be considered apart
from the above theoretical one. (1) In a large organization,model usersmight interpret the same diagram differently or
use certain modeling constructs in conflicting ways. This might result in inconsistent, non-reusable models if modeling
guidelines and validations are not used [4, 27]. (2) Some industrial design, simulation and verification tool developers
strive for for maximum standard compliance, but this is hard to achieve due to the imprecise semantics that makes
it difficult to correctly implement the corner-cases. [18, 13, 16]. (3) Furthermore, the integration of these tools are
difficult in an industrial environment, because the execution traces provided by them might not be consistent with
each other. For example, a formal verification tool might find a trace trace that cannot be produced by the simulator or
themodel user might come upwith an execution trace that is not possible due to some limitations of the language [17].

Challenges
To summarize, we observed these challenges when using formal verification for executable SysML state machines:

1. The SysML and UML standards are complex with many elements and intricate details.
2. Several constructs that are used in practice result in demanding verification problems (e.g., conflicting read-

write access to shared variables in orthogonal regions or calling arbitrary source code in effects).
3. MBSE tools might handle certain constructs differently. For example, it is a serious risk if the execution order

of orthogonal regions is handled differently in the model simulator, code generator, and model checker.
4. Humans might use and interpret certain constructs in a non-standard way, e.g., priorities of transitions or

aborting a do activity, that may conflict with the result of the verification.

Benedek Horváth et al. 9

Semantic integrity
In an ideal setting, there would be full semantic integrity across the whole organization and engineering lifecycle:
simulation, verification, code generation tools, execution platforms and engineers would interpret the models consis-
tently, and the behavior of an artifact produced in one tool would conform to the behavior in other tools. However,
ensuring such semantic consistency across a supply chain or an organization is an extremely challenging task despite
the efforts of standardization bodies, academic researchers, tool vendors, and even domain experts. Therefore, we
aimed for consistency with a pragmatic subset of SysML and a particular integrated toolchain, where a validation and
verification tool shall report problems that can be discovered with a simulator or explained to systems engineers.

3.2 | Pragmatic semantic integrity

As discussed in the previous section, achieving the semantic integrity of a full MBSE lifecycle is an overly ambitious
goal. Therefore as a first stepwe aimed for a pragmatic approach bymaking the following compromises: we focused (1)
on the V&V of the SysML-based system-level design phases, (2) with a fixed set of tools, (3) for a subset of the SysML
language, (4) by using syntactic and semantic restrictions that can limit the ambiguity, and the possible state space
of the behavioral models to make formal verification scalable. However, we made sure that the resulting approach
is not too limited from a practical point of view, and engineers could use it to design real systems. Thus sometimes
we included language elements for which semantic integrity could not be guaranteed but are required by existing
modeling practices. In these cases we give warnings that explain the possible differences in the interpretations.
Pragmatic semantic integrity
The pragmatic semantic integrity of a given toolchain means that the tools in the workflow interpret the models the
same way, or provide means to explain the differences. In this way, systems engineers are informed that the results
are consistent with each other and with the modeling practices, considering the restrictions of the respective tools.
Example
A good example for making such pragmatic choices is handling orthogonal regions in state machines. According to
the official PSSM standard, the execution of effects and related actions can interleave in any order for transitions in
different regions even in one run-to-completion step, resulting in many possible traces. Such concurrency could cause
state space explosion in complex models. Nevertheless, orthogonal regions shall be supported as they are essential
in industrial models. Thus we restricted the execution of orthogonal regions to a strict sequential order in formal
verification. Simulation tools usually also choose to have a deterministic execution order and produce only one of the
possible traces. However, this order is not documented, therefore the simulation might produce a trace different from
the one returned by formal verification. Thus our approach gives a warning if orthogonal regions are used in a model.
Method
We used the following method to achieve the pragmatic semantic integrity among the selected tools and to compile
a pragmatic subset of the SysML language. We

1. manually inspected of relevant SysML, fUML and PSSM standards, to collect the most important concepts;
2. conducted interviews and focus group meetings with engineers from NASA JPL, ESO and OpenMBEE to learn

about their engineering practices;

10 Benedek Horváth et al.

OpenMBEE

MMS

View
Editor

MDK

Validation

Verification

New services

Modeling tools

MagicDraw

Simulation tool

γ ​ Gamma
Framework

F IGURE 4 Selected toolchain of design (MagicDraw, Cameo Systems Modeler), simulation (Cameo Simulation
Toolkit), and repository (OpenMBEE) tools extended with the new V&V services proposed in this paper.

3. inspected available domain-specific models from TMT and the OpenSE Cookbook to identify the design pat-
terns and most common elements;

4. experimented with selected SysML modeling, simulation and verification tools to discover the differences in
their operation (see Figure 4);

5. inspected the used modeling elements from the formal verification’s complexity point of view; and
6. finally compiled a pragmatic subset of the SysML language.
As formal verification tools vastly differ in their expressive power and capabilities, we relied on the intermediate

language offered by the Gamma Framework [52]. The Gamma Statechart Composition and Verification Framework
was specifically developed for formal verification of reactive systems, and it offers and a tailored modeling language
with precise formal semantics and a common interface supporting several formal verification backends.
Pragmatic subset
The central artifact of our approach is a subset of the SysML language for which the pragmatic semantic integrity can
be achieved in case of design and V&V activities. To create this subset we selected first modeling elements that are
uniformly and unambiguously supported by each tool. Next, the elements that have different interpretations between
the tools or have large performance implications in simulation or verification, but were required due to modeling
practice reasons, were included in the subset. The differences among the tools were bridged either by restricting
their execution for a common subset, or defining warnings to explain the possible inconsistencies. The elements that
had unmanageable differences between the tools were excluded from the subset. This process could be repeated by
iteratively updating the pragmatic subset, as the standards, engineering practice and tools evolve.

3.3 | A pragmatic subset of the SysML language

Our goal was to give systems engineers a design-time model validation and verification workflow that is able to
check the dynamic behavioral properties of the models in a semantically integrated way. We focused on SysML state
machines and activity diagrams, since they are one of the most commonly used formalisms for behavioral modeling.

Benedek Horváth et al. 11

Element Restriction
Block, Composite Block, Interface Block -
Port -
Parameterized signal -
Data type Integer, Boolean, Enumeration Literal
Initial, Choice, Deep and Shallow History -pseudostates
Simple and composite states -
Transition with Time Event or -Signal Event trigger

JavaScript guards, actions
variable assignments, predicates, ALH.sendSignal to send
signals, ALH.inState to check if state is active,
no loop, no array, no dynamic memory,
no other function call is allowed

Transition effect Activity, or restricted JavaScript
State entry or exit actions Activity, or restricted JavaScript

(a) State machine and structure elements.
Element Restriction
Control Flow loop and recursion free
Data Flow -
Initial, Activity Final Nodes there must exist exactly one of each
Decision and Merge Nodes Decision Node must have a default true branch
Fork and Join Nodes sequential execution of concurrent Control Flows,

that must join in the same Join Node
Call Behavior Action behavior is Activity, no recursion in the call hierarchy
Send Signal Action -
Add Structural Feature Value Action -
Read Structural Feature Action -
Value Specification Action Literal Integer or Boolean value, restricted JavaScript expression
Opaque Expressions, Actions see JavaScript guards and actions

(b) Activity diagram elements.
TABLE 1 A pragmatic subset of the SysML language that is suitable for formal verification.

Although the SysML language gives huge degree of freedom in using and combining the different modeling ele-
ments, we had to apply restrictions in order to achieve formal verification in practice. (1) We limited the execution
order of orthogonal regions to the same order as they are defined in the model. (2) We forbade do-activities com-
pletely as they are running concurrently to the state machines and aborting them is not well-defined in the standard.
(3) We forbade arbitrary source code, dynamic memory allocation and loops in guards, actions and effects, because
they are well-known difficult problems in software model checking [22]. (4) Although the activity diagrams help engi-
neer’s describe complex control and communication logic easily, but their asynchronous and parallel execution impose
huge verification complexity. Therefore we simplified them so they can be verified by the Gamma Framework.

12 Benedek Horváth et al.

Due to some of the restrictions, not all theoretically possible traces are explored during verification (e.g., not all
interleavings of events in orthogonal regions). But we can still check a much greater number of traces with these
restrictions than what is possible with simulation, while giving warnings when such trade-offs are applied.

The final, refined pragmatic subset of modeling elements are listed in Table 1. State machines communicate with
each other using parameterized Signals via Ports; and have timed Transitions. Expressions can include variables and
literals of type Boolean, Integer or Enumeration. Activities or simplified JavaScript can be used to express an uninter-
ruptible, loop- and recursion-free Control Flow. We have confirmed with subject matter experts from NASA-JPL, ESO
andOpenMBEE that this subset contains themost commonly used elements in the aerospace domain and still enables
practitioners to build sufficiently complex, yet verifiable systems engineering models (like the TMT model [11] which
adopts design patterns applied at NASA JPL). Language elements left out either can be replaced by a combination
of elements from the practical subset, or they pose such complexity for verification that they cannot be reasonably
verified anyway.

Although the concrete, pragmatic subset of the SysML language was compiled from models and modeling prac-
tices in the aerospace and astronomy domain, but the method we outlined can be applied in other domains as well,
because the process is domain-independent.

F IGURE 5 Overview of the V&V workflow.

4 | THE V&V WORKFLOW

Figure 5 overviews the workflow supporting the design-time verification and validation of SysML models using ele-
ments of the pragmatic subset. The workflow is built around the Gamma Framework: validating if the SysML model
conforms with the pragmatic subset, transforming the model to the input language of Gamma, running verification and
back-annotating the results to the modeling domain.

4.1 | Steps of the V&V workflow

Validation
In the validation phase, we check if the selectedmodels conformwith the restrictions of our pragmatic subset of SysML.
If the model contains unsupported or structurally incorrect elements, then we return validation errors. Warnings are

Benedek Horváth et al. 13

returned for elements that are interpretedwith restricted semantics. Weused theViatraQuery Language (VQL) [63] to
implement a comprehensive validation suite consisting of more than 130 imperative and declarative rules. Imperative
rules check the JavaScript guard expressions, action and effect statements. Declarative rules are composed as graph
patterns and validate the structure of the SysML models.

F IGURE 6 Composite Block transformation process.

Transformation to Gamma models
Next, the SysML composite system and reachability property models are transformed to the Gamma Statechart and
Property languages, respectively. During the transformation, a traceability model between the SysML State Machine
and the Gamma statechart is built to track the mapping between the source and target models. This traceability model
is used for transforming the reachability property and back-annotating the verification results to the source domain.

Figure 6 illustrates the transformation process of the SysML composite Block. Each Block of the composite system
is transformed to aGamma statemachine. After the transformation of the individual Blocks, the ports of the composite
system are transformed and the generated state machines are connected to each other according to the internal
structure of the system. Finally, the components are wrapped according to the compositional semantics of Gamma.

Verification of Gamma models
In the verification phase, Gamma transforms the Gamma StatechartModels to formal models and the Gamma Property
Model to formal queries specific to the respectivemodel checker. During the translation, several semantics-preserving
optimizations reduce the size of the models that reduces the verification time. Such optimizations among others are:

14 Benedek Horváth et al.

removing the statically unreachable states and unfireable transitions, removing unused variables and events, inlining
consecutive variable assignments [26].

(a) Execution Trace in Gamma.

(b) SysML sequence diagram trace.
F IGURE 7 Execution Trace to sequence diagram mapping.

Back-annotation of the Execution Trace
If the reachability property is satisfied, then Gamma returns an Execution Trace (Figure 7a) leading to the target state
configuration. Each step of the trace contains: (1) the active state configuration of components including the values
of variables (represented by a hexagon), (2) the set of input signals that were received by the composite system
(represented by incoming arrows), (3) the set of output signals that were sent by the system (represented by outgoing
arrows), and (4) the time that is spent before proceeding to the next step (in case of a timed system, represented by
wait X ms). The steps in the trace are visually separated by a horizontal line an Execute rectangle in the middle.

Using the traceability model created during the forward-transformation, we back-annotated the Execution Trace
to a SysML sequence diagram, as depicted in Figure 7b for the running example. On the diagram, we can see that

Benedek Horváth et al. 15

the composite system is in the initial state configuration, when it receives a Start Signal via the Control Port and 1
ms elapses until we get to the next state configuration. After that, due to space limitations, we only represent the
last state configuration of the trace. The spacecraft is in the Transmitting State, it has sent 20 packets to the station
and its battery is 79. The station is in the Receiving State, it has received 20 packets and as a last action it sends the
ReceivedPackets(20)Message via the Status Port of the composite system. Reaching the last state configuration proves
that the reachability property of the running example is satisfied.

The back-annotated SysML sequence diagram (Figure 7b), can be used for manual inspection of the execution,
and to simulate the state machines in the Cameo Simulation Toolkit (CST).

SysML
tool

Modeling (user)

MMS

4
Back-annotated SysML
Sequence Diagram

V & V actions (user) 3
Verification of
Gamma models

1 Validation

2
Transformation to
Gamma models

Verification result with
Gamma Execution Trace

Jupyter
notebook

Validation and
Transformation Service

Validation
rules

Transformation
rules

Model Checker Runtime

Theta
model checker

UPPAAL
model checkerGamma

Framework

Legend:
Tool

Model
checker

Rule Model
repository

<<uses>> <<returns artifact>>

Kubernetes

Current contributions

F IGURE 8 Overview of the architecture.

4.2 | Technical realization

We implemented the aforementioned verification and validation (V&V) workflow, using proprietary and open-source
tools. The architecture is depicted in Figure 8.

Systems engineers design the state machines, activity diagrams and define the reachability properties in SysML
modeling tools, e.g.,MagicDrawor Cameo SystemsModeler, and push them to theOpenMBEEMMSmodel repository.
Then, users open a web browser to perform V&V actions in a Jupyter notebook8 serving as a frontend. The frontend
is connected to the Validation and Transformation Service (VTS) in the backend which validates the SysML models 1 ,
before transforming them to Gamma models 2 and verifying them with the Gamma Framework 3 . The verification
result is presented in the browser 4 , possibly including a Gamma Execution Trace that is back-annotated to a SysML
sequence diagram. (If the reachability property cannot be satisfied, then no SysML sequence diagram is returned.)

On the backend side, we use IncQuery Suite (IQS), a scalable model query middleware on top of collaborative
model repositories [29], to improve the performance of the validation and transformation phases. IQS builds an
in-memory index from the model and can efficiently evaluate queries implemented in the Viatra Query Language.
These queries are used by model validation (Section 4.1) and transformation rules. We implemented several model
transformation rules that build the target and traceability models. The transformedmodels are persisted, and are used
in the verification and back-annotation phases of the V&V workflow.

In the verification phase, the Gamma Framework translates the intermediate models to formal models and queries
8Jupyter Community. Jupyter https://jupyter.org

https://jupyter.org

16 Benedek Horváth et al.

to be checked by different model checkers, i.e., UPPAAL [5] or Theta [62]. The philosophy of Gamma is to have
a portfolio of supported model checkers. Each tool implements different algorithms tailored to specific classes of
problems, therefore having a larger variety of model checkers increases the chance of successful verification. For
example, UPPAAL uses explicit model checking and is efficient for timed systems, while Theta uses a wide array
of abstraction-based symbolic techniques that have a larger overhead on simpler problems, but have a chance of
verifying harder ones where an explicit algorithm would not scale.

In order to have a scalable architecture, we moved the processing from workstations to the cloud. Most com-
ponents in the architecture can be deployed on Kubernetes, an open-source cloud orchestration, deployment and
scalability tool for containerized applications. Applications can be deployed into different execution units, called pods,
that can have certain amount of computation resources allocated. In this way, they can be scaled up with high amount
of CPU and memory (vertical scalability) or new pods can be started on-demand (horizontal scalability), as long as the
cluster has enough computational resources. The elastic scalability of the cloud enables the adaptive allocation of a
high amount of computational resources [59], that can address the high resource demand of the Model Checker Run-
time (MCR) component. Moreover, the portfolio of model checkers philosophy of Gamma can also benefit from the
cloud-based setting, because we can execute multiple model checker configurations in parallel and stop the process
when one of them gives a result. Ultimately, if we accumulate enough data about the target models, we may be able
to reduce the executed configurations to a few promising ones and achieve a relatively good price/performance ratio.

As model checking is the most resource intensive task in the workflow, we serve each verification task in a sep-
arate pod, running the MCR. This way, the long-running tasks can be served in parallel. As the concurrent pods
(managed by Kubernetes) can be deployed to a computing cluster, the overall performance is no longer limited by the
resources available on a single computer. Therefore, the workflow can serve many users running their verification
tasks concurrently and enable its use as a common verification service for a team of systems engineers.

Besides scalability, another advantage of our approach is the separation of concerns for the engineering and the
formal verification domains: systems engineers design both the models and the properties in a high-level engineering
language they are familiar with. The formal models are automatically derived from these high-level design models by a
series of transformations hidden from the users. The verification result is back-annotated to the original engineering
language, thereby making it easier to understand potential issues without expertise in formal methods. Besides, it
helps engineers to inspect the execution in detail or to derive further test cases.

4.3 | Demonstration of semantic integrity

The semantic integrity of the toolchain can be illustrated by checking Property (b) on the motivating example (Fig-
ure 3). The verification result trace (Figure 7) proves that the property is violated, because in the last state battery

is 79%, the Spacecraft is still transmitting and the Ground Station has already received 20 packets. Simulating the se-
quence diagram trace in CST, one can find that the entry action of Discharging state causes the issue (Figure 2c). The
faulty model can be fixed by moving the action to the effect of the outgoing timed transition. Rerunning verification
proves that the undesired state is not reachable anymore.

From the systems engineering perspective, the checked properties are representatives of requirements, that
would have been difficult to check with inspection or traditional simulation of operational scenarios. The warnings
during the transformation emphasize that only part of the possible behavior is explored. But if an execution trace is
returned, then it can help engineers inspect the actual behavior of their model. Note that we will revisit the limitations
of such trace back-annotation in Section 6.

Benedek Horváth et al. 17

5 | EVALUATION

We evaluated our proposed validation and verification workflow in different scenarios imitating real-world use. These
scenarios demonstrate that

1. our approach can scale to industrially relevant models,
2. the cloud-based workflow can efficiently server multiple users running different verification jobs.

Environment
We set up an evaluation environment on Amazon Elastic Kubernetes Service (EKS). The infrastructure consisted of
two EC2 nodes: one m5.xlarge instance (4 vCPUs, 16 GB RAM) and one m5.2xlarge instance (8 vCPUs, 32 GB RAM).
The elements of the architecture in Figure 8 were deployed as follows: IncQuery Suite (IQS) and the Validation and
Transformation Service (VTS) were running on the m5.xlarge instance; theModel Checker Runtime (MCR) was deployed
in varying number of pods on the m5.2xlarge instance, depending on the scenario.

Models
For benchmark purposes, we used the running example Spacecraft model from this paper with two versions and a
modified version of OpenMBEE’s Thirty-Meter Telescope (TMT) [11] model. In the faulty version of the Spacecraft
model, the reachability property (Figure 3) is satisfied; in the fixed version, the reachability property is unsatisfied due
to the correction described in Section 4.3. Both the faulty and the fixed versions of the model contain 11 states, 23
transitions and 5 activity actions.

In the TMT model, we chose the Procedure Executive and Analysis Software (PEAS) Block and adapted its state
machine and activities to the pragmatic subset of SysML supported by our workflow. We removed do-behaviors
from the state machine, removed unsupported Actions from the Activities, replaced Float variables with Integers,
and resolved data type inconsistencies in Activity actions. This was necessary to make the model conform with
our pragmatic subset. Nevertheless, the resulting model is still quite complex and represents the general modeling
patterns used in the OpenSE Cookbook. We specified four reachability properties for the TMT model, denoted as
TMT1–4 in Table 2. The table contains the name of the target state and the number of states and activity actions for
the shortest paths satisfying the respective property. The PEAS block contains 61 states, 93 transitions and 2310
activity actions althogether.

5.1 | Evaluation scenarios

We describe the two scenarios in which the workflow was executed and the results obtained in each of them.

Name Target state Number of states Number of activity actions

TMT1 Minimize Sensor Readings 5 213
TMT2 M3 Alignment 3 8 533
TMT3 Broad Band Phasing 3um 9 636
TMT4 Broad Band Phasing 1um 3 10 739

TABLE 2 Reachability properties in TMT and metrics on the shortest path to reach the target state.

18 Benedek Horváth et al.

5.1.1 | Scenario 1: Artificial and real-world models

Description
We deployed the MCR in one pod and we only sent one validation, transformation and verification request at a time
for each model and reachability property. This scenario serves as a high-level validation and as a baseline.

(a) Validation and transformation times.

(b) Verification times.
F IGURE 9 Validation, transformation and verification times of the Spacecraft and TMT models.

Results
Figure 9 depicts the measurement results. Figure 9a shows that the model validation and transformation were com-
pleted in an acceptable time, despite running more than 130 validation rules. The model sizes are reflected in the
execution times: while the simpler Spacecraft model is validated in 2 seconds and transformed in 2.5 seconds, the
more complex TMT model is validated in 10 seconds and transformed in 11 seconds.

Benedek Horváth et al. 19

Regarding the verification times, depicted in Figure 9b, it can be seen on the one hand, that UPPAAL outperforms
Theta for the Spacecraft faulty model which contains timed transitions. On the other hand, Theta performs better for
the TMTmodel which contains many data variables, due to the large number of activity actions whose instructions are
transformed to variable assignments. The large difference in verification times of the Spacecraft faultymodel is due to
the abstraction-refinement algorithm implemented by Theta that tracks the values of the clock variables in the model,
which results in a large number of combinations that needs to be checked by the model checker. However, in case of
the Spacecraft fixed model, where the property is unsatisfied, Theta finishes in about the same time as UPPAAL, due
to the abstraction domain used in verification.

Conclusions: As Figure 9 shows, the approach is capable of transforming and verifying properties on artificial
and complex industrial models within an acceptable time. Besides, the differences between explicit and abstraction-
basedmodel checkers could be also observed: UPPAALmay handle timed systems better than Theta, however further
models and verifiable properties are needed to draw a definitive conclusion in this respect. As Figure 9 shows, the ver-
ification times are the most influential in the whole validation and verification workflow, therefore in the subsequent
scenario we only measure the verification time.

5.1.2 | Scenario 2: Horizontal scalability

Description

This scenario investigates that if we have multiple verification requests (possibly coming from different users) then
how does the approach scale if more than oneMCRs are performing verification. Therefore we deployed theMCR on
1, 2, 4 pods. Each pod was handling only one verification request at a time. We sent 4 verification requests (TMT1–4)
in a fixed order directly after each other asynchronously to the workflow. The verification requests were waiting in a
queue until being processed by a free pod. We repeated the measurements with each model checker (UPPAAL and
Theta) separately, resulting in six sub-scenarios (3 pod configurations × 2 model checkers).

F IGURE 10 TMT model verification times when using the elastic scalability of the workflow.

20 Benedek Horváth et al.

Results
By looking at Figure 10, we can see the execution order and the effect of the queuing times of the requests. As the
number of processing pods grow from1 to 2, so is the overall execution time of the requests reduced. However, in case
of 4 pods we can see that the concurrent verification requests give higher load to the single processing m5.2xlarge
node. This results in longer verification times than in Figure 9b when only one request was processed by the node at
the same time. Besides, we can also observe that Theta was able to verify the models faster than UPPAAL, confirming
our observations from Scenario 1.

Conclusions: The benefit of using a cloud-based approach in the deployment is that, as the number of pods grow,
we can serve more users concurrently with the same resources. This approach can result in lower round-trip times
for long-running verification tasks and better resource utilization in multi-user environments. However, we shall also
consider the computational capacity of the processing nodes when allocating pods to the nodes, to avoid starvation.

5.2 | Discussion

Summary of results
The results of the evaluation show that using the recommended SySML subset and the developed V&V workflow
checking reachability properties on large, executable models with hundreds of detailed actions is feasible. Due to the
reasonable V&V times, the workflow can provide feedback to engineers on potential design issues. The cloud-based,
scalable architecture makes it possible to use the workflow in a multi-user, enterprise environment.

Threats to validity
To address threats to the internal validity of the measurements, we executed 20 rounds of warm-up requests in each
phase, followed by the 7 rounds of measurements whose median represents a data point on each figure. In order
to address the external validity concerns, we used an industrial model (TMT) apart from a syntactic model (running
example). However, our results might not be generalizable for models built from elements that are not part of the
pragmatic subset defined in Section 3.3 (construct validity). Nevertheless, it is important to note that industrial models
are generally confidential, so having an evaluation as presented in this paper is vital to move forward to industrial use.

6 | LESSONS LEARNED

We present the lessons learned during designing a method capable of verifying system models in an industrial set-
ting. We discuss the requirements and challenges related to (1) supporting SysML models in practice, (2) industrial
deployment and (3) scaling model checking.

6.1 | Handling and interpreting industrial models

Minimum supportable elements
During the interviews with systems engineers we have learned that pure SysML state machines alone are not enough
to tackle practical engineering problems. Script-based action and guard languages help engineers express statements
and conditions with a compact textual syntax. Based on the TMTmodel and discussions with systems engineers from
NASA JPL, activity diagram is a commonly used formalism to express behavior in an engineering-friendly way. The
data and control flow-based semantics of activity diagrams is usually easier for systems engineers to understand than

Benedek Horváth et al. 21

the state-based semantics, due to its resemblance to programming.
Lesson 1. Supporting some executable action and guard language, and activity diagrams for specifying detailed ac-

tions is a must to verify industrial models.
Interpretation of semantics
Although the precise definition of the semantics of UML/SysML models has vastly improved with the introduction
of the fUML and PSSM specifications, there are still ambiguous interpretations in the execution semantics of activity
and state machine diagrams [50, 16]. The questions related to semantics are further complicated by two aspects in
practice. First, tool vendors developing amodeling tool for a longer timemay implement some parts based on previous
specifications or they need to fill the gaps in the specification. This can lead to situations like that the simulation tool
of MagicDraw (CST) executes the models according to a semantics (SCXML9) that is independent from the OMG-
specified standards [56, 58]. Second, even if some parts of the specification is precise, systems engineers might
interpret a diagram differently. We encountered several occasions when based on previous experiences with other
tools or statechart notations, engineers did not realize all the possible interleavings due to non-determinism in a
complex statechart with orthogonal regions. Due to these reasons the model checker may return several traces that
cannot be reproduced by the corresponding tools or contradict the intuitions of systems engineers.
Lesson 2. Finding a pragmatic subset of themodeling language can help with reducing the ambiguity in interpretation

among the tools and humans.
A pragmatic subset of SysML
On the one hand, the pragmatic subset of SysML chosen in Section 3.3 can be regarded as an opinionated modeling
approach that puts some restrictions on the modeling practice of the engineers. On the other hand, these restrictions
are necessary to find an appropriate balance between verifiable models and the large degree of freedom engineers
like to have when designing systems. From the engineering point of view, the pragmatic subset enables the design
of composite asynchronous reactive systems that communicate with signals and have actions defined with textual
JavaScript syntax or graphical activities. From the formal verification perspective, the pragmatic subset represents
the most common modeling elements that state-of-the-art model checkers are able to verify.

In this paper, we have experimentedwith the toolsmentioned in Section 3. The semantic integrity of theworkflow
is specific for the tools involved in it. Therefore, further analysis is needed to test, if some tools could be replaced by
others, e.g., using a tool other than MagicDraw and Cameo Systems Modeler for system design.
Back-propagation of results
Running a successful formal verification on a complex state machine is only the first part of the challenge. In case
of a long counterexample, presenting the low-level trace of the model checkers usually does not add much business
value as systems engineers need a representation that can help them to locate and correct the root cause of the
problem. Therefore the verification results must be mapped back to the domain of the system model. This is a
non-trivial task known in the literature. For example, Hegedüs et al. [30] have listed several challenges that could
occur when back-propagating a formal execution trace to a domain execution sequence: mismatch between step
granularity, independent subsequences, and spurious formal sequences. We encountered similar challenges that were
later tackled by the Gamma Framework during the back-propagation of the low-level formal traces to the Execution

9State Chart XML (SCXML): https://www.w3.org/TR/scxml/

https://www.w3.org/TR/scxml/

22 Benedek Horváth et al.

Trace in Gamma. After the Gamma Execution Trace to SysML Sequence Diagram transformation, we faced the issue
that the resulting Interaction was not completely compatible with Cameo Simulation Toolkit, as the simulator did not
wait the exact amount of time as set in theDuration Constraints. Besides, the simulation of the Interaction sporadically
became unsynchronized with the state machines, i.e., the Interaction did not proceed from a State Invariant, even
though the respective state was active. These issues hindered the correct simulatability of the traces, which can be
rather used for manual inspection purposes. Full simulation was not a priority feature at the moment, but a future
challenge is to be able to simulate all special corner cases returned by the model checker.
Lesson 3. Back-propagating and simulating complex counterexamples involving multiple state machines with exact

timing information is an open challenge not supported by all current tools.

6.2 | Infrastructure for an industrial environment

Requirements
Having a verification solution alone is unfortunately not enough to be deployed to an enterprise environment. The
tool should (1) be deployable both on-premise and to cloud infrastructure, (2) should be able to integrate to other
systems. Besides, for confidentiality reasons it should have (3) authentication and authorization with auditing, (4)
should be able to serve jobs from multiple users in parallel with an acceptable response time. For auditing purposes,
the system (5) should log the executed operations without degrading its performance, and (6) should make the
transformation artefacts and logs easily retrievable. Fulfilling these requirements needs extra effort, but it enables
applying state-of-the-art research in practice.
Lesson 4. The verification workflow shall be adapted to the policies and requirements of the corresponding enter-

prise, and contain many features that are usually not supported by research tools.
Realization
To be able to deploy the V&V workflow to the industrial context presented in the paper, one of the objectives set
out in Section 2.3 was to have a toolchain that can be integrated with OpenMBEE. This goal was achieved in the
following way. The workflow uses MMS as model repository, where the SysML models can be uploaded by using the
MDK plug-in of MagicDraw and can be reviewed by the View Editor component (Figure 1). Although we used MMS
in our case study, but our solution is model repository agnostic, because it delegates the model acquisition task to
IncQuery Suite (IQS). Therefore, further repositories (e.g., Teamwork Cloud) can be added to the workflow, as long
as they are supported by IQS. Moreover, all the features of the workflow are accessible through REST APIs, which
makes it easy to integrate them into various engineering workflows with different tools. A major effort was put into
developing a container-based wrapper around the Gamma Framework and model checker tools that can be easily
deployed (i.e., Model Checker Runtime), and a job management feature that orchestrates the requests and the steps
in the V&V workflow.

6.3 | Scaling model checking

State space explosion is one of the most difficult problems in model checking, which makes it difficult to scale for
industry-grade models. In order to proceed with tackling this challenge, we took the benefit of several optimizations
in the Gamma Framework. On the level of the state machines, such optimizations include removing statically unreach-

Benedek Horváth et al. 23

able states and unfireable transitions. On the level of the formal models, these include merging consecutive, atomic
transition sequences to one transition, using scoped local variables in actions, inlining statically deducible variable
assignments, removing unused variables. Besides, to reduce concurrency in the models, we restricted the execution
order of orthogonal regions in state machines, and control flows between fork-join nodes in activities. These restric-
tions reduce the state space that has to be explored and therefore provide verification results faster.

Proving properties with abstraction-based model checking techniques may cause unexpectedly long execution
times, if the wrong abstraction refinement is chosen by the model checker. To avoid this outcome, when the Theta is
chosen as amodel checker for a verification task, we runmultiple instances of it with different abstraction parametriza-
tions (forming a model checking portfolio). As soon as the quickest instance returns a result, the others are terminated.
Nevertheless, it may occur that all instances run indefinitely, in which case formal engineering expert knowledge is
needed to fine-tune the parametrizations according to the models and the properties being verified. However, this
adaptive fine-tuning is left as future work [1].

Nevertheless, by applying the approach proposed in the paper, we have learned that applying model checking
on industry-size models remains challenging despite the optimizations mentioned before. On the one hand, in model
checking, improving abstraction-based verification algorithms [61] can help with gaining some runtime performance.
On the other hand, the cloud-ready architecture enables the use of elastic cloud resources which give more compu-
tation power even if this improvement is less significant compared to an improvement on the algorithm level. Finally,
further evaluations are needed to find the scalability limits of the approach with respect to the model size.

Lesson 5. To proceed towards scaling verification for industrial behavioralmodels, restricting the explored state space,
according to the environmental constraints in which the models will be used, is a necessary optimization choice.

7 | RELATED WORK

To put our research in a broader context, we collected related work about the practical advantages and perceived
challenges of using model-driven engineering and formal methods in industry (Section 7.1), and applications of hidden
formal methods in verifying system models (Section 7.2).

7.1 | MDE and formal methods in industry

Bucchiarone et al. [6] described tool and implementation challenges hindering the wide-spread use of Model-Driven
Engineering (MDE). Among others, lack of good tooling, e.g., component-based integrated environments, that adopt
textual languages and treat them like models or graphical interfaces tailored for the engineers’ needs. From the im-
plementation perspective, traceability between the different artifacts [2] and understanding the semantics of such
links are also important. Finally, scalability in terms of size and diversity of artifacts, i.e., models, metamodels, model
transformations and dependencies in any non-trivial project, have been denoted as one of the open challenges that
tools tried to address in the last decade. We encountered similar challenges and therefore focused on an integrated,
scalable tooling environment.

Hutchinson et al. [36] conducted a surveywith 449 participants and complemented itwith in-depth interviewswith
practitioners from four companies to learn about the success and failure factors of adoptingMDE practices in industry.
They concluded that the successful adoption of MDE in industry requires a progressive and iterative approach with a
transparent organizational commitment, clear business focus and willingness to align internal processes accordingly.

24 Benedek Horváth et al.

The social implications of this changemanagement, e.g., increased training costs, willingness to change the engineering
methodology, should be also considered besides the technical factors. Huldt and Stenius [35] identified similar factors
in a survey with 66 professionals. Our experiences confirm that an iterative approach is key to success, and the cost
and challenge of changing modeling methods and practices should be taken into account from start.

Gleirscher and Marmsoler [25] surveyed 216 participants from industry (78%) and academia (22%) about the use
of formal methods (FM) in mission-critical software domains. Their results indicate an increased intent to apply FMs
in industry across all application domains, suggesting a positively perceived usefulness. Besides, the intrinsic motiva-
tion to use FM is stronger than the regulatory one. Scalability, skills, and education were perceived as the toughest
challenges of applying FMs in practice. More experienced respondents more often rated these challenges as highly
difficult, compared to less experienced ones. Finally, past experience with formal methods was positively correlated
with future usage intent. We observed a similar situation in NASA JPL, where successful previous projects [23, 24]
opened the way for working an environment to use formal verification as a service.

Garavel et al. [21] surveyed 130 high-profile experts in different aspects of formal methods for the 25th interna-
tional conference on Formal Methods for Industrial Critical Systems. One aspect was the industrial adoption of formal
method practices. 67.7% of the responders believe that formal methods are now ready to be used in industry in a lim-
ited extent. The reasons for the limited applicability are often related to the domains, tool maturity, and people’s skill
and willingness to transfer and adopt academic research results to industrial case studies. According to the survey, the
most mentioned limiting factor of wider adoption of formal method by industry are the improper integration of formal
methods in the industrial design life-cycle, the lack of proper training of FMs and its steep learning curve. According
to the research participants, more collaborative projects between research and industry and increased support for
academic researchers developing tools can contribute to addressing these challenges. We contributed to overcoming
these limitations by developing a workflow that is tightly integrated into the engineering environments.

Woodcock et al. [66] surveyed 62 industrial projects to collect experiences about industrial adoption of formal
methods. On correlating the techniques used against the project date, they found an increase of model checking from
13% in the 1990s to 51% in 2009. According to the survey, improved quality is one of the main benefits of applying
formal methods, 92% of all cases reporting an increase in quality compared to other techniques. Detection of faults,
improvements in design, increased confidence and improved understanding were the most mentioned specificities of
quality improvement. On the other hand, education of engineers, and the integration of model-checking solutions into
the toolset of engineers, and quick response time (“formal methods need to provide answers in seconds or minutes
rather than days”) are the major impediments to formal methods adoption. Our objectives of developing a pragmatic
verification approach were motivated by the same limitations.

7.2 | Verifying systems with hidden formal methods

To motivate the use of hidden formal methods, Visser et al. [64] surveyed papers which applied such methods to verify
complex domain-specific hardware and software models. They observed that keeping the formal and intermediate
models hidden from the end-user is paramount to the success of the domain-specific model checker. Besides, they
argued that model checking becomes effective when the natural notations of the design domain are supported in the
formal models as well. However, if there is a semantic gap between the two domains, then similar to our approach,
they advocate to develop appropriate intermediate representations (models) to bridge the gap both in the forward
transformation and the back-annotation phases.

Software and systems model checking is a widely researched area, with a plethora of tools and approaches avail-
able. Ciccozzi et al. [9] performed a systematic review of solutions for the execution of UML models. The closest one

Benedek Horváth et al. 25

to ours is Kölbl et al. [44] who proposed an approach to translate SysML models to the language of NuSMV, Prism,
and Spin model checkers. Similar to us, they used an intermediate metamodel between the engineering and formal
domains, and the counterexamples are returned as SysML sequence diagrams. In contrast to us, they verified Linear
Temporal Logic (LTL) expressions specified as OCL state invariants in SysML, supported only send signal actions in
activities, and used only a small model of an airbag system.

Calvino and Apvrille [7] proposed the direct model-checking of SysML state machine models. In their paper, they
used AVATAR to design the SysML models that are directly verified by TTool. They support the verification of a
broader set of formal expressions specified in text. The verification results of reachability and liveness properties are
back-annotated directly to the state machines, but a trace of the model checker representation is also returned.

Gibson et al. [23] verified properties on SysML statecharts by combining code generation with software model
checking techniques. They translated the statemachines to Java code by the COMODOmodel-to-text transformation
tool, and evaluated certain properties by Java Pathfinder [28]. The verifiable property was directly inserted in the
generated code, the guards of the transitions were transformed manually, and the result was not annotated back to
the original model. They used depth-limits as a trade-off between performance and the ability to verify properties [24].

de la Croix et al. [14] proposed a role-based framework for the design, execution and verification of robotic appli-
cations. The framework extends the Business Process Modeling Language and Notation to design missions. To check
the models’ correctness, they translate a subset of the elements to Spin [31] and verify simple LTL properties. The
back-annotation of results is a proposed future work.

Miller et al. [51] proposed a translator framework that allows engineers to automatically translate synchronous
dataflow models and state machines from MATLAB Simulink and Esterel Technologies SCADE Suite to a variety of
model checkers and theorem provers (NuSMV, SAL, Prover, PVL, ACL2). As an intermediate language they use the
Lustre formal specification language. Similar to Gamma, the translator framework applies optimizations to the models
to reduce their formal verification time. The counterexamples produced by the model checkers are translated to
a simple spreadsheet showing the inputs and outputs of the model for each step.Finally, they demonstrated the
application of the framework in three industrial case studies.

Cicchetti et al. [8] proposed the CHESS framework to design, validate and verify and generate code from complex
component-based embedded software system models. For modeling, they use CHESSML that adopts elements from
the UML, SysML andMARTE languages. In the validation and verification phase, engineers can perform dependability
and schedulability analysis (e.g., FailureMode and Effect Analysis, Fault Tree Analysis, etc. [8]), contract-based analysis
and formal verification [15]. In formal verification, the system and component-level properties are formalized into LTL
expressions that are verified by the nuXmv model checker. The results of the analysis and the verification are back-
propagated to the design model, following the principles of hidden formal methods.

To the best of our knowledge, all of these tools are purpose-built, single user tools targeted towards experts
without APIs. The main differentiating feature of our approach is a workflow integrated into common engineering
design tools hiding formal methods that can be deployed into a multi-user, cloud-based enterprise environment.

8 | CONCLUSION

In this paper, we presented an automated verification and validation workflow of industrial executable SysML models.
The workflow is integrated to the OpenMBEE project and maintains a pragmatic semantic integrity among the tools
used in the design, validation and verification phases. We identified a pragmatic subset of the SysML language sup-
ported by all tools that allows for complex practical modeling, while also supports scalable, but limited state-space

26 Benedek Horváth et al.

verification. The workflow enables the verification of reachability properties on state machines and activity diagrams,
using the Gamma Framework and different model checkers. The process is hidden, fully automated and offloaded
to cloud services. The results are back-propagated to the original domain, to help engineers understand them in a
language they are familiar with.

The most important lessons learned in our research were: (1) finding a pragmatic subset of the modeling language
can help with reducing the ambiguity in interpretation among the tools and humans, (2) supporting some executable
action and guard language is a must to verify industrial models, (3) restricting the explored state space is a necessary
optimization choice to proceed towards scaling verification for industrial behavioral models.

As future work, we are planning to adapt our approach to the next generation of SysML (SysML v2), which com-
pletely changes the way semantics are captured in the standard [19, 53], and has the potential of widening the se-
mantic integrity for a larger set of next-generation tools. Secondly, we are planning to deploy the workflow to an
industrial partner to improve the work of systems engineers and collect feedback from them. Finally, we will fine-
tune the portfolio-based execution to predict which model checker parametrization provides the fastest results.

Acknowledgment

This researchwas carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract
with theNational Aeronautics and SpaceAdministration (NASA). The authorswould like to thank Luigi Andolfato (ESO),
as well as Myra Lattimore and Ivan Gomes (NASA JPL) for their suggestions to improve the paper. We would also like
to thankMilánMondok (BME) and Ábel Hegedüs, Ármin Zavada and Balázs Várady (IncQuery Labs) for their help with
implementing the workflow. This work partially received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No 813884, and the NRDI Fund of
Hungary, financed under the [2019-2.1.1-EUREKA-2019-00001] funding scheme.

Disclaimer. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the
Jet Propulsion Laboratory, California Institute of Technology.

References

[1] Zsófia Ádám, Levente Bajczi, Mihály Dobos-Kovács, Ákos Hajdu, and Vince Molnár. Theta: Portfolio of CEGAR-based
analyses with dynamic algorithm selection (competition contribution). In Proc. TACAS (2). Springer, 2022.

[2] Deniz Akdur, Vahid Garousi, and Onur Demirörs. A survey on modeling and model-driven engineering practices in the
embedded software industry. J. Syst. Archit., 91:62–82, 2018.

[3] L Andolfato, G Chiozzi, NMigliorini, and CMorales. A platform independent framework for statecharts code generation.
In Proc. of the 13th Int. Conf. on Accelerator and Large Experimental Physics Control Systems, 2011.

[4] Ronan Baduel, Mohammad Chami, Jean-Michel Bruel, and Iulian Ober. SysML Models Verification and Validation in an
Industrial Context: Challenges and Experimentation. InModelling Foundations and Applications, pages 132–146. Springer
International Publishing, 2018.

[5] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Hakansson, Paul Petterson, Wang Yi, and Martijn Hendriks.
UPPAAL 4.0. In Proc. of the 3rd Int. Conf. on the Quantitative Evaluation of Systems, page 125–126. IEEE, 2006.

[6] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio. Grand challenges in model-driven engi-
neering: an analysis of the state of the research. Softw. Syst. Model., 19(1):5–13, 2020.

Benedek Horváth et al. 27

[7] Alessandro Tempia Calvino and Ludovic Apvrille. Direct model-checking of SysML models. In Proc. of the 9th Int. Conf.
on Model-Driven Engineering and Software Development, pages 216–223. SCITEPRESS, 2021.

[8] Antonio Cicchetti, Federico Ciccozzi, SilviaMazzini, Stefano Puri, Marco Panunzio, Alessandro Zovi, and Tullio Vardanega.
CHESS: a model-driven engineering tool environment for aiding the development of complex industrial systems. In
Automated Software Engineering, pages 362–365. ACM, 2012.

[9] Federico Ciccozzi, Ivano Malavolta, and Bran Selic. Execution of UML models: a systematic review of research and
practice. Software & Systems Modeling, 18(3):2313–2360, 2018.

[10] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick P Bloem. Handbook of model checking. Springer,
2018.

[11] TMT Observatory Corporation. Thirty Meter Telescope SysML model, 2022. Last accessed on 2022-09-09.
[12] Michelle L. Crane and Juergen Dingel. On the semantics of UML state machines: Categorization and comparision. In In

Technical Report 2005-501, School of Computing, Queen’s, 2005.
[13] Michelle L. Crane and Jürgen Dingel. UML vs. classical vs. Rhapsody statecharts: not all models are created equal. Softw.

Syst. Model., 6(4):415–435, 2007.
[14] Jean-Pierre de la Croix, Grace Lim, Joshua Vander Hook, Amir Rahmani, Greg Droge, Alexander Xydes, and Chris Scrap-

per Jr. Mission modeling, planning, and execution module for teams of unmanned vehicles. In Unmanned Systems
Technology XIX, volume 10195, page 101950J. International Society for Optics and Photonics, 2017.

[15] Alberto Debiasi, Felicien Ihirwe, Pierluigi Pierini, Silvia Mazzini, and Stefano Tonetta. Model-based analysis support for
dependable complex systems in CHESS. In Proc. of the 9th Int. Conf. on Model-Driven Engineering and Software Develop-
ment, pages 262–269. SCITEPRESS, 2021.

[16] Márton Elekes and Zoltán Micskei. Towards testing the UML PSSM test suite. In Proc. of the 10th Latin-American
Symposium on Dependable Computing, pages 1–4. IEEE, 2021.

[17] Márton Elekes, Vince Molnár, and Zoltán Micskei. Assessing the specification of modelling language semantics: A study
on UML PSSM, 2022.

[18] Rik Eshuis. Reconciling statechart semantics. Sci. Comput. Program., 74(3):65–99, 2009.
[19] Sanford Friedenthal. Requirements for theNext Generation SystemsModeling Language (SysML v2). INSIGHT, 21(1):21–

25, 2018.
[20] Jonas Fritzsch, Tobias Schmid, and StefanWagner. Experiences from large-scalemodel checking: Verification of a vehicle

control system. CoRR, abs/2011.10351, 2020.
[21] Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. The 2020 expert survey on formal methods. In Formal

Methods for Industrial Critical Systems, volume 12327 of LNCS, pages 3–69. Springer, 2020.
[22] Corrina Gibson, Michael Bonnici, and Jean-Francois Castet. Model-based spacecraft fault management design & formal

validation. In 2015 IEEE Aerospace Conference, pages 1–12, 2015.
[23] Corrina Gibson, Robert Karban, Luigi Andolfato, and John Day. Formal validation of fault management design solutions.

Softw. Eng. Notes, 39(1):1–5, 2014.
[24] Corrina Gibson, Robert Karban, Luigi Andolfato, and John C. Day. Abstractions for executable and checkable fault

management models. In Systems Engineering Research, pages 146–154. Elsevier, 2014.
[25] Mario Gleirscher and Diego Marmsoler. Formal methods in dependable systems engineering: a survey of professionals

from Europe and North America. Empir. Softw. Eng., 25(6):4473–4546, 2020.

28 Benedek Horváth et al.

[26] Bence Graics, Vince Molnár, and István Majzik. Integration test generation for state-based components in the Gamma
framework. Preprint, 2022.

[27] Joshua Logan Grumbach and Lawrence Dale Thomas. Systems integration implications of component reuse. Systems
Engineering, 2022.

[28] Klaus Havelund and Thomas Pressburger. Model checking JAVA programs using JAVA finder. Int. J. Softw. Tools Technol.
Transf., 2(4):366–381, 2000.

[29] Ábel Hegedüs, Gábor Bergmann, Csaba Debreceni, Ákos Horváth, Péter Lunk, ÁkosMenyhért, István Papp, Dániel Varró,
Tomas Vileiniskis, and István Ráth. IncQuery Server for Teamwork Cloud: Scalable query evaluation over collaborative
model repositories. In Proc. of the 21st Int. Conf. on Model Driven Engineering Languages and Systems, page 27–31. ACM,
2018.

[30] Ábel Hegedüs, Gábor Bergmann, István Ráth, andDániel Varró. Back-annotation of simulation traceswith change-driven
model transformations. In Proc of the 8th Int. Conf. on Software Engineering and Formal Methods, pages 145–155. IEEE
Computer Society, 2010.

[31] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Professional, 1st edition,
2011.

[32] Gerard J Holzmann. Mars code. Comm. of the ACM, 57(2):64–73, 2014.
[33] Benedek Horváth, Bence Graics, Ákos Hajdu, Zoltán Micskei, Vince Molnár, István Ráth, Luigi Andolfato, Ivan Gomes,

and Robert Karban. Model checking as a service: towards pragmatic hidden formal methods. In Companion Proc. of the
23rd Int. Conf. on Model Driven Engineering Languages and Systems, pages 37:1–37:5. ACM, 2020.

[34] Zhaoxia Hu and Sol M. Shatz. Explicit modeling of semantics associated with composite states in UML statecharts.
Autom. Softw. Eng., 13(4):423–467, 2006.

[35] T. Huldt and I. Stenius. State-of-practice survey of model-based systems engineering. Systems Engineering, 22(2):134–
145, 2019.

[36] John Edward Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven engineering practices in industry: Social,
organizational and managerial factors that lead to success or failure. Sci. Comput. Program., 89:144–161, 2014.

[37] Nerijus Jankevicius. Resource analysis and automated verification for the thirty meter telescope using executable SysML
models. In Executable Modeling, volume 1760, pages 2–4. CEUR-WS.org, 2016.

[38] P. A. Jansma and R. M. Jones. Advancing the practice of systems engineering at JPL. In IEEE Aerospace Conference, page
19 pp., March 2006.

[39] Robert Karban, Amanda G Crawford, Gelys Trancho, Michele Zamparelli, Sebastian Herzig, Ivan Gomes, Marie Piette,
and Eric Brower. The OpenSE cookbook. In Modeling, Systems Engineering, and Project Management for Astronomy VIII,
volume 10705, page 107050W, 2018.

[40] Robert Karban, Frank G. Dekens, Sebastian Herzig, Maged Elaasar, and Nerijus Jankevičius. Creating system engineering
products with executable models in a model-based engineering environment. In Modeling, Systems Engineering, and
Project Management for Astronomy VII, volume 9911, pages 96–111. SPIE, 2016.

[41] Robert Karban, Nerijus Jankevičius, and Maged Elaasar. ESEM: Automated systems analysis using executable SysML
modeling patterns. In INCOSE International Symposium, volume 26, pages 1–24. Wiley, 2016.

[42] Robert Karban, Marie Piette, Eric Brower, Ivan Gomes, Emilee Bovre, Myra Lattimore, Blake Regalia, John Carr, Chad
Harris, Christopher Delp, and Cin-Young Lee, 2020. Last accessed on 2022-09-09.

Benedek Horváth et al. 29

[43] Robert Karban, Robbie Robertson, Ahsan Qamar, and Erich Lee. Preface to the OpenMBEE int. workshop. In Companion
Proc. of the 23rd Int. Conf. on Model Driven Engineering Languages and Systems, pages 464–464. IEEE, 2021.

[44] Martin Kölbl, Stefan Leue, and Hargurbir Singh. From SysML to model checkers via model transformation. In Proc. of
the 25th International Symposium on Model Checking Software, volume 10869 of LNCS, pages 255–274. Springer, 2018.

[45] Diego Latella, István Majzik, and Mieke Massink. Automatic verification of a behavioural subset of UML statechart
diagrams using the SPIN model-checker. Formal Aspects Comput., 11(6):637–664, 1999.

[46] Diego Latella, Istvan Majzik, and Mieke Massink. Towards a formal operational semantics of UML statechart diagrams.
In Formal Methods for Open Object-Based Distributed Systems, pages 331–347. Springer, 1999.

[47] Lucas Lima, André Didier, and Márcio Cornélio. A formal semantics for SysML activity diagrams. In Formal Methods:
Foundations and Applications, volume 8195 of LNCS, pages 179–194. Springer, 2013.

[48] Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun, Bimlesh Wadhwa, and Jin Song Dong. A formal seman-
tics for complete UML state machines with communications. In Proc. of the 10th Int. Conf. on Integrated Formal Methods,
volume 7940 of LNCS, pages 331–346. Springer, 2013.

[49] Azad M. Madni and Michael Sievers. Model-based systems engineering: Motivation, current status, and research op-
portunities. Systems Engineering, 21(3):172–190, 2018.

[50] Zoltán Micskei, Raimund-Andreas Konnerth, Benedek Horváth, Oszkár Semerath, András Vörös, and Dániel Varró. On
open source tools for behavioral modeling and analysis with fUML and Alf. In 1st Workshop on Open Source Software for
Model Driven Engineering, volume 1290, pages 31–41. CEUR, 2014.

[51] Steven P. Miller, Michael W.Whalen, and Darren D. Cofer. Software model checking takes off. Commun. ACM, 53(2):58–
64, 2010.

[52] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The Gamma statechart composition frame-
work: Design, verification and code generation for component-based reactive systems. In Proc. of the 40th Int. Conf. on
Software Engineering, pages 113–116. ACM, 2018.

[53] OMG. Systems Modeling Language (SysML) v2 RFP, 2017. ad/17-12-02.
[54] OMG. Unified Modeling Language (UML), 2017. formal/17-12-05.
[55] OMG. Precise Semantics of UML Composite Structures (PSCS), 2019. formal/19-02-01.
[56] OMG. Precise Semantics of UML State Machines (PSSM), 2019. formal/19-05-01.
[57] OMG. System Modeling Language (SysML), 2019. formal/19-11-01.
[58] OMG. Semantics of a Foundational Subset for Executable UML Models (fUML), 2021. formal/21-03-01.
[59] Amir Molzam Sharifloo and Andreas Metzger. Mcaas: Model checking in the cloud for assurances of adaptive systems.

In Software Engineering for Self-Adaptive Systems III, pages 137–153. Springer, 2013.
[60] Walter McGee Taraila and Sharanabasaweshwara Asundi. Model-based systems engineering for a small-lift launch facil-

ity. Systems Engineering, 2022.
[61] Tamás Tóth. Abstraction refinement-based verification of timed automata. PhD thesis, Budapest University of Technology

and Economics, 2021.
[62] Tamás Tóth, ÁkosHajdu, András Vörös, ZoltánMicskei, and IstvánMajzik. Theta: a framework for abstraction refinement-

based model checking. In Formal Methods in Computer-Aided Design, pages 176–179, 2017.

30 Benedek Horváth et al.

[63] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and Zoltán Ujhelyi. Road to a reactive and
incremental model transformation platform: three generations of the VIATRA framework. Softw. Syst. Model., 15(3):609–
629, 2016.

[64] Willem Visser, Matthew B. Dwyer, and Michael W. Whalen. The hidden models of model checking. Softw. Syst. Model.,
11(4):541–555, 2012.

[65] Sabine Wolny, Alexandra Mazak, Christine Carpella, Verena Geist, and Manuel Wimmer. Thirteen years of SysML: a
systematic mapping study. Softw. Syst. Model., 19(1):111–169, 2019.

[66] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John S. Fitzgerald. Formal methods: Practice and experience.
ACM Comput. Surv., 41(4):19:1–19:36, 2009.

[67] Paulo Younse, Jessica Cameron, and Thomas H. Bradley. Comparative analysis of model-based and traditional systems
engineering approaches for simulating a robotic space system architecture through automatic knowledge processing.
Systems Engineering, 25(4):360–386, 2022.

	Introduction
	Industrial context
	Running example demonstrating industrial modeling practices
	V&V of industrial SysML models: State of the art
	Objective and challenges

	A pragmatic V&V approach for SysML
	Challenges of verifying SysML models
	Pragmatic semantic integrity
	A pragmatic subset of the SysML language

	The V&V workflow
	Steps of the V&V workflow
	Technical realization
	Demonstration of semantic integrity

	Evaluation
	Evaluation scenarios
	Scenario 1: Artificial and real-world models
	Scenario 2: Horizontal scalability

	Discussion

	Lessons learned
	Handling and interpreting industrial models
	Infrastructure for an industrial environment
	Scaling model checking

	Related work
	MDE and formal methods in industry
	Verifying systems with hidden formal methods

	Conclusion

