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Abstract. Formal verification is becoming more prevalent and often
compulsory in the safety-critical system and software development pro-
cesses. Reachability analysis can provide information about safety and in-
variant properties of the developed system. However, checking the reach-
ability is a computationally hard problem, especially in the case of asyn-
chronous or infinite state systems. Petri nets are widely used for the mod-
eling and verification of such systems. In this paper we examine a recently
published approach for the reachability checking of Petri net markings.
We give proofs concerning the completeness and the correctness proper-
ties of the algorithm, and we introduce algorithmic improvements. We
also extend the algorithm to handle new classes of problems: submarking
coverability and reachability of Petri nets with inhibitor arcs.

1 Introduction

The development of complex, distributed systems, and safety-critical systems
in particular, require mathematically precise verification techniques in order to
prove the suitability and faultlessness of the design. Formal modeling and anal-
ysis methods provide such tools. However, one of the major drawbacks of formal
methods is their computation and memory-intensive nature: even for relatively
simple distributed, asynchronous systems the state space and the set of possible
behaviors can become unmanageably large and complex, or even infinite.

This problem also appears in one of the most popular modeling formalisms,
Petri nets. Petri nets have a simple structure, which makes it possible to use
strong structural analysis techniques based on the so-called state equation. As
structural analysis is independent of the initial state, it can handle even infi-
nite state problems. Unfortunately, its pertinence to practical problems, such
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as reachability analysis, has been limited. Recently, a new algorithm [12] us-
ing Counter-Example Guided Abstraction Refinement (CEGAR) extended the
applicability of state equation based reachability analysis.

Our paper improves this new algorithm in several important ways. The au-
thors of the original CEGAR algorithm have not published proofs for the com-
pleteness of their algorithm and the correctness of a heuristic used in the algo-
rithm. In this paper we analyze the correctness and completeness of their work
as well as our extensions. We prove the lack of correctness in certain situations
by a counterexample, and provide corrections to overcome this problem. We
also prove that the algorithm is incomplete, due to its iteration strategy. We
describe algorithmic improvements that extend the set of decidable problems,
and that effectively reduce the search space. We extend the applicability of the
approach even further: we provide solutions to handle Petri nets with inhibitor
arcs, and the so-called submarking coverability problem. At the end of our paper
we demonstrate the efficiency of our improvements by measurements.

2 Background

In this section we introduce the background of our work. First, we present Petri
nets (Section 2.1) as the modeling formalism used in our work. Section 2.2 in-
troduces the counterexample guided abstraction refinement method and its ap-
plication for the Petri net reachability problem.

2.1 Petri nets

Petri nets are graphical models for concurrent and asynchronous systems, pro-
viding both structural and dynamical analysis. A discrete ordinary Petri net is a
tuple PN = (P, T,E,W ), where P is the set of places, T is the set of transitions,
with P 6= T 6= ∅ and P ∩ T = ∅, E ⊆ (P × T ) ∪ (T × P ) is the set of arcs and
W : E → Z+ is the weight function assigning weights w−(pj , ti) to the edge
(pj , ti) ∈ E and w+(pj , ti) to the edge (ti, pj) ∈ E [9].

A marking of a Petri net is a mapping m : P → N. A place p contains k
tokens in a marking m if m(p) = k. The initial marking is denoted by m0.

Dynamic behavior. A transition ti ∈ T is enabled in a marking m, if m(pj) ≥
w−(pj , ti) holds for each pj ∈ P with (pj , ti) ∈ E. An enabled transition ti can
fire, consuming w−(pj , ti) tokens from places pj ∈ P if (pj , ti) ∈ E and producing
w+(pj , ti) tokens on places pj ∈ P if (ti, pj) ∈ E. The firing of a transition ti in
a marking m is denoted by m[ti〉m′ where m′ is the marking after firing ti.

A word σ ∈ T ∗ is a firing sequence. A firing sequence is realizable in a
marking m and leads to m′, m[σ〉m′, if either m = m′ and σ is an empty word,
or there exists a w ∈ T ∗ realizable firing sequence, a ti ∈ T , and an m′′ such that
m[w〉m′′[ti〉m′. The Parikh image of a firing sequence σ is a vector ℘(σ) : T → N,
where ℘(σ)(ti) is the number of the occurrences of ti in σ.



Petri nets can be extended with inhibitor arcs to become a tuple PNI =
(PN, I), where I ⊆ (P × T ) is the set of inhibitor arcs. There is an extra
condition for a transition ti ∈ T with inhibitor arcs to be enabled: for each
pj ∈ P , if (pj , ti) ∈ I, then m(pj) = 0 must hold. A Petri net extended with
inhibitor arcs is Turing complete.

Reachability problem. A marking m′ is reachable from m if there exists
a realizable firing sequence σ ∈ T ∗, for which m[σ〉m′ holds. The set of all
reachable markings from the initial marking m0 of a Petri net PN is denoted by
R(PN,m0). The aim of the reachability problem is to check if m′ ∈ R(PN,m0)
holds for a given marking m′.

We define a predicate as a linear inequality on markings of the form Am ≥ b,
where A is a matrix and b is a vector of coefficients [6]. The aim of the submarking
coverability problem is to find a reachable marking m′ ∈ R(PN,m0) for which a
given predicate Am′ ≥ b holds.

The reachability problem is decidable [8], but it is at least EXPSPACE-hard
[7]. Using inhibitor arcs, the reachability problem in general is undecidable [3].

State equation. The incidence matrix of a Petri net is a matrix C|P |×|T |,
where C(i, j) = w+(pi, tj)− w−(pi, tj). Let m and m′ be markings of the Petri
net, then the state equation takes the form m + Cx = m′. Any vector x ∈ N|T |
fulfilling the state equation is called a solution. Note that for any realizable
firing sequence σ leading from m to m′, the Parikh image of the firing sequence
fulfills the equation m + C℘(σ) = m′. On the other hand, not all solutions of
the state equation are Parikh images of a realizable firing sequence. Therefore,
the existence of a solution for the state equation is a necessary but not sufficient
criterion for the reachability. A solution x is called realizable if there exists a
realizable firing sequence σ, with ℘(σ) = x.

T-invariants. A vector x ∈ N|T | is called a T-invariant if Cx = 0 holds. A real-
izable T-invariant represents the possibility of a cyclic behavior in the modeled
system, since its complete occurrence does not change the marking. However,
during firing the transitions of the T-invariant, some intermediate markings can
be interesting for us later.

Solution space. Each solution x of the state equation m + Cx = m′, can be
written as the sum of a base vector and the linear combination of T-invariants
[12], which can formally be written as x = b+

∑
i niyi, where b is the base vector

and ni is the coefficient of the T-invariant yi.

2.2 The CEGAR approach

The counterexample guided abstraction refinement (CEGAR) is a general ap-
proach for analyzing systems with large or infinite state space. The CEGAR



method works on an abstraction of the original model, which has fewer restric-
tions. During the iteration steps, the CEGAR method refines the abstraction
using the information from the explored part of the state space. When applying
CEGAR on the Petri net reachability problem [12], the initial abstraction is the
state equation. Solving the state equation is an integer linear programming prob-
lem [5], for which the ILP solver tool can yield one solution, minimizing a target
function of the variables. Since the algorithm seeks the shortest firing sequences
leading to the target marking, it minimizes the function f(x) =

∑
t∈T x(t). When

solving the ILP problem, the following situations are possible:

– If the state equation is infeasible, the necessary criterion does not hold, thus
the target marking is not reachable.

– If the state equation has a realizable solution, the target marking is reachable.
– If the state equation has an unrealizable solution, it is a counterexample and

the abstraction has to be refined.

The purpose of the abstraction refinement is to exclude counterexamples from
the solution space, without losing any realizable solution. For this purpose, the
CEGAR approach uses linear inequalities over transitions, called constraints.

Constraints. Two types of constraints were defined by Wimmel and Wolf [12]:

– Jump constraints have the form |ti| < n, where n ∈ N, ti ∈ T and |ti|
represents the firing count of the transition ti. Jump constraints can be used
to switch between base vectors, exploiting their pairwise incomparability.

– Increment constraints have the form
∑k

i=1 ni|ti| ≥ n, where ni ∈ Z, n ∈ N,
and ti ∈ T . Increment constraints can be used to reach non-base solutions.

Partial solutions. For a given Petri net PN = (P, T,E,W ) and a reachability
problem m′ ∈ R(PN,m0), a partial solution is a tuple (C, x, σ, r), where:

– C is the set of jump and increment constraints, together with the state equa-
tion they define the ILP problem

– x is the minimal solution satisfying the state equation and the constraints
in C,

– σ ∈ T ∗ is a maximal realizable firing sequence, with ℘(σ) ≤ x, i.e., each
transition can fire as many times as it is included in the solution vector x,

– r = x− ℘(σ) is the remainder vector.

Generating partial solutions. Partial solutions can be produced from a so-
lution vector x (and a constraint set C) by firing as many transitions as possible.
For this purpose, the algorithm uses a “brute force” method. The algorithm
builds a tree with markings as nodes and occurrences of transitions as edges.
The root of the tree is the initial marking m0, and there is an edge labeled by
t between nodes m1 and m2 if m1[t〉m2 holds. On each path leading from the



root of the tree to a leaf, each transition ti can occur at most x(ti) times. Each
path to a leaf represents a maximal firing sequence, thus a new partial solution.
Even though the tree can be traversed only storing one path in the memory at a
time using depth first search, the size of the tree can grow exponentially. Some
optimizations are presented later in this section to reduce the size of the tree.

A partial solution is called a full solution if r = 0 holds, thus, ℘(σ) = x,
which means that σ realizes the solution vector x. For each realizable solution
x of the solution space there exists a full solution [12]. This full solution can be
reached by continuously expanding the minimal solution of the state equation
with constraints.

Consider now a partial solution ps = (C, x, σ, r) which is not a full solution,
i.e., r 6= 0. This means that some transitions could not fire enough times. There
are three possible situations in this case:

1. x may be realizable by another firing sequence σ′, thus a full solution ps′ =
(C, x, σ′, r) exists.

2. By adding jump constraints, greater, but pairwise incomparable solutions
can be obtained.

3. For transitions t ∈ T with r(t) > 0 increment constraints can be added to
increase the token count on the input places of t, while the final marking
m′ must be unchanged. This can be achieved by adding new T-invariants to
the solution. These T-invariants can “borrow” tokens for transitions in the
remainder vector.

Generating jump constraints. Each base vector of the solution space can be
reached by continuously adding jump constraints to the minimal solution [12].
In order to reach non-base solutions, increment constraints are needed, but they
might conflict with previous jump constraints. Jump constraints are only needed
to obtain a different base solution vector. However, after the computation of the
base solution, jump constraints can be transformed into equivalent increment
constraints ([12]).

Generating increment constraints. Let ps = (C, x, σ, r) be a partial solution
with r > 0. This means that some transitions (in r) could not fire enough times.
The algorithm uses a heuristic to find the places and number of tokens needed
to enable these transitions. If a set of places actually needs n (n > 0) tokens, the
heuristic estimates a number from 1 to n. If the estimate is too low, this method
can be applied again, converging to the actual number of required tokens. The
heuristic consists of the following three steps:

1. First, the algorithm builds a dependency graph [10] to get the transitions
and places that are of interest. These are transitions that could not fire, and
places which disable these transitions. Each source SCC3 of the dependency
graph has to be investigated, because it cannot get tokens from another
components. Therefore, an increment constraint is needed.

3 Strongly connected component



2. The second step is to calculate the minimal number of missing tokens for
each source SCC. There are two sets of transitions, Ti ⊆ T and Xi ⊆ T . If
one transition in Ti becomes fireable, it may enable all the other transitions
of the SCC, while transitions in Xi cannot activate each other, therefore
their token shortage must be fulfilled at once.

3. The third step is to construct an increment constraint c for each source SCC
from the information about the places and their token requirements. These
constraints will force transitions (with r(t) = 0) to produce tokens in the
given places. Since the final marking is left unchanged, a T-invariant is added
to the solution vector.

When applying the new constraint c, three situations are possible depending
on the T-invariants in the Petri net:

– If the state equation and the set of constraints become infeasible, this partial
solution cannot be extended to a full solution, therefore it can be skipped.

– If the ILP solver can produce a solution x+ y (with y being a T-invariant),
new partial solutions can be found. If none of them help getting closer to the
full solution, the algorithm can get into an infinite loop, but no full solution is
lost. A method to avoid this non-termination phenomenon will be discussed
below.

– If there is a new partial solution ps′ where some transitions in the remainder
vector could fire, this method can be continued.

Theorem 1. (Reachability of solutions) [12] If the reachability problem has a
solution, a realizable solution of the state equation can be reached by continuously
adding constraints, transforming jumps before increments.

Optimizations. Wimmel and Wolf [12] presented also some methods for opti-
mization. The following are important for our work:

– Stubborn set The stubborn set method [10] investigates conflicts, concur-
rency and dependencies between transitions, and reduces the search space
by filtering the transitions: stubborn set method usually leads to a search
tree with lower degree.

– Subtree omission When a transition has to fire more than once (x(t) > 1),
the stubborn set method does not provide efficient reduction. The same
marking is often reached by firing sequences which only differ in the order of
transitions. During the abstraction refinement, only the final marking of the
firing sequence is important. If a marking m′ is reached by firing the same
transitions as in a previous path, but in a different order, the subtree after
m′ was already processed. Therefore, it is no longer of interest.

– Filtering T-invariants After adding a T-invariant y to the partial solu-
tion ps = (C, x, σ, r), all the transitions of y may fire without enabling any
transition in r, yielding a partial solution ps′ = (C′, x + y, σ′, r). The final
marking and remainder vector of ps′ is the same as in ps, therefore the same
T-invariant y is added to the solution vector again, which can prevent the



algorithm from terminating. However, during firing the transitions of y, the
algorithm could get closer to enabling a transition in r. These intermediate
markings should be detected, and be used as new partial solutions.

3 Theoretical results

In this section we present our theoretical results with regard to the correctness
and completeness of the original algorithm.

3.1 Correctness

Although Theorem 1 states that a realizable solution can be reached using con-
straints, we found out that in some special cases the heuristic used for generating
increment constraints can overestimate the required number of tokens for prov-
ing reachability. We prove the incorrectness by a counterexample, for which the
original algorithm [12] gives an incorrect answer.

Consider the Petri net in Figure 1 with the reachability problem (0, 1, 0, 0, 1,
0, 0, 2) ∈ R(PN, (1, 0, 0, 0, 0, 0, 0, 2)), i.e., we want to move the token from p0 to
p1 and p4. The example was constructed so that the target marking is reach-
able by the firing sequence σm = (t1, t2, t0, t5, t6, t3, t7, t4), realizing the solution
vector xm = (1, 1, 1, 1, 1, 1, 1, 1).
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p6

p7 t1

t2
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2

2 2 2

3 3

Fig. 1. Counterexample for correctness.

The CEGAR algorithm does the following steps. First, it finds the mini-
mal solution vector x = (1, 0, 1, 1, 1, 0, 0, 0), i.e., it tries to fire the transitions
t0, t2, t3, t4. From these transitions only t0 is enabled, therefore the only par-
tial solution is ps = (∅, x, σ = (t0), r = (0, 0, 1, 1, 1, 0, 0, 0)). At this point the
algorithm looks for an increment constraint. The dependency graph contains
transitions t2, t3, t4 (since they could not fire) and places p0, p2, p3 (because they
disable the previous transitions). The only source SCC is the set containing one



place p0 with zero tokens (because t0 has consumed one token from there). The
algorithm estimates that three tokens are needed in place p0, where only transi-
tion t1 can produce tokens. Therefore, the T-invariant t1, t5, t6, t7 is added twice
to the solution vector. This invariant is constructed so that for each of its firing,
a token has to be produced in places p2, p3, p4, which token can no longer be
removed. In the target marking only one token can be present on these places,
therefore the algorithm cannot find the solution for the reachability problem.

Notice that the problem is the over-estimation of tokens required at p0. With-
out forcing t0 to fire, the algorithm could get a better estimation. This would
imply that the invariant t1, t5, t6, t7 is added only once to the solution vector,
producing the realizable solution xm. The problem is that the algorithm always
tries to find maximal firing sequences, though some transitions would not be
practical to fire (t0 in the example above). Due to this, the estimated number of
tokens needed in the final marking of the firing sequence may not be correct.

Solution. Our improved algorithm counts the maximal number of tokens in
each place during the firing sequence of the partial solutions into a vector mmax.
If the final marking is not the maximal regarding a SCC, the algorithm might
have over-estimated the required number of tokens. This can be detected by
ordering the intermediate markings. Formally: an over-estimation can occur if a
place p exists in a SCC, for which mmax(p) > m′(p) holds, where m′ is the final
marking of the firing sequence.

3.2 Completeness

To our best knowledge, the completeness of the algorithm has neither been
proved nor disproved yet. When we examined the iteration strategy of the
abstraction loop, we found a whole subclass of nets, which cannot be solved
with this strategy. As an example, consider the Petri net in Figure 2 with
the reachability problem (1, 1, 0, 0) ∈ R(PN, (0, 1, 0, 0)), i.e., we want to pro-
duce a token in p0. We constructed the net so that the firing sequence σ =
(t1, t4, t2, t3, t3, t0, t1, t2, t5) solves the problem. The main concept of this exam-
ple is that we lend an extra token on p1 indirectly using the T-invariant t4, t5.

p0
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p3

t0

t1
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t3

t4

t5

2

2

Fig. 2. Counterexample of completeness.



When applying the algorithm on this problem, the minimal solution vector
is x0 = (1, 0, 0, 0, 0, 0), i.e., firing t0. Since t0 is not enabled, the only partial
solution is ps0 = (∅, x0, σ0 = (), r0 = (1, 0, 0, 0, 0, 0)). The algorithm finds that
an additional token is required in p1, and only t3 can satisfy this need. With
an increment constraint c1 : |t3| ≥ 1, the T-invariant t1, t2, t3 is added to the
new solution vector x1 = (1, 1, 1, 1, 0, 0), giving us one partial solution ps1 =
(c1, x1, σ1 = (t1, t2, t3), r1 = r0). Firing the T-invariant t1, t2, t3 does not help
getting closer to enabling t0, since no extra token can be “borrowed” from the
previous T-invariant. The iteration strategy of the original algorithm does not
recognize the fact that an extra token could be produced in p3 (using t4) and
then moved in p1, therefore it can not decide reachability.

4 Algorithmic contributions

In this section we present our algorithmic contributions. In Section 4.1 we show
some classes of problems for which the original algorithm cannot decide reach-
ability, and our improved algorithm solves these problems. In Section 4.2 we
present two extensions of the algorithm, solving submarking coverability prob-
lems and handling Petri nets with inhibitor arcs.

4.1 Improvements

In the previous section we proved that the algorithm is not complete, but during
our work we found some opportunities to extend the set of decidable problems.
Moreover, we developed a new termination criterion which we prove to be correct,
i.e., no realizable solution is lost using this criterion.

Total ordering of intermediate markings. When a partial solution ps =
(C, x, σ, r) is skipped using the T-invariant filtering optimization, the original
algorithm checks if it was closer to firing a transition t in the remainder during
the firing sequence σ. This is done by “counting the minimal number of missing
tokens for firing t in the intermediate markings occurring”[12]. We found out
that this criterion is not general enough: in some cases the total number of
missing tokens may not be less, but they are missing from different places, where
additional tokens can be produced. In our new approach, we use the following
definition:

Definition 1. An intermediate marking mi is considered better than the final
marking m′, if there is a transition t ∈ T, r(t) > 0 and place p with (p, t) ∈ E
for which the following criterion holds:

m′(p) < w−(p, t) ∧ mi(p) > m′(p). (1)

The left inequality in the expression means that in the final marking t is disabled
by the insufficient amount of tokens in p. This condition is important, because



we do not want to have more tokens on places, that already have enough to
enable t. The right inequality means that p has more tokens in the intermediate
marking mi compared to the final marking m′.

Theorem 2. Definition 1 is a total ordering of the intermediate markings oc-
curring in the firing sequence of a partial solution.

Proof. We first show that Definition 1 includes the original ordering of the inter-
mediate markings. When the original criterion holds, the total number of missing
tokens for enabling t at the marking mi is less than at m′. This means that at
least one place p must exist, which disables t, but mi(p) > m′(p), therefore (1)
must hold. Furthermore, Definition 1 also recognizes markings which are pair-
wise incomparable, because if there is at least one place p with lesser tokens
missing, (1) holds.

Corollary 1. The total ordering of intermediate markings extends the set of
decidable problems.

Definition 1 is more general than the original criterion, hence it does not
reduce the set of decidable problems. On the other hand, we give an exam-
ple when the original criteria prevents the algorithm from finding the solution.
Consider the Petri net in Figure 3 with the reachability problem (1, 0, 0, 1) ∈
R(PN, (0, 1, 0, 1)), i.e., moving one token from p1 to p0. The minimal solution
vector is x0 = (1, 0, 0, 0, 0), i.e., firing t0, which is disabled by p2, therefore
the only partial solution is ps0 = (∅, x, σ0 = (), r0 = (1, 0, 0, 0, 0)). The algo-
rithm looks for increment constraints and finds that only t1 can produce to-
kens on p2. Consequently, the T-invariant t1, t2 is added to the solution vector
x1 = (1, 1, 1, 0, 0). There is one partial solution ps1 = ({|t1| ≥ 1}, x1, σ1 =
(t1, t2), r1 = (1, 0, 0, 0, 0)) for x1, where the T-invariant is fired, but t0 still could
not fire. This partial solution is skipped by the T-invariant filtering optimization,
and in all of the intermediate markings of σ1, totally one token is missing from
the input places of t0. By using the original criterion, the algorithm terminates,
leaving the problem as undecided. By using Definition 1 after firing t1, less to-
kens are missing from p2 than in the final marking. Continuing from here, t0 is
disabled by p1, where t3 can produce tokens, therefore the T-invariant t3, t4 is
added to the new solution vector x2 = (1, 1, 1, 1, 1). A full solution is found for
x2 by the realizable firing sequence σ2 = (t1, t3, t0, t2, t4).

T-invariant filtering and subtree omission. Using T-invariant filtering and
subtree omission optimizations together can prevent the algorithm from finding
full solutions. The order of transitions in the firing sequence of a partial solution
does not matter, except in one case. When a partial solution is skipped, the algo-
rithm checks for intermediate markings where it was closer to firing a transition
in the remainder vector. By using subtree omission, intermediate markings can
get lost.

As an example consider the Petri net in Figure 4 with the reachability prob-
lem (1, 0, 0, 0, 3) ∈ R(PN, (0, 0, 0, 0, 3)), i.e., we want to produce a token on p0.
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Fig. 3. Example net depicting the usefulness of the total ordering

A possible solution is the vector xm = (1, 1, 1, 2, 2, 3, 3) realized by the firing
sequence σm = (t6, t6, t6, t4, t4, t2, t0, t1, t3, t3, t5, t5, t5).

p4 p3
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t4

p1
t1

t2

t0
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Fig. 4. An example where the order of transitions matter.

Here we present only the interesting points during the execution of the al-
gorithm. As a minimal solution, the algorithm tries to fire t0, but it is disabled
by the places p1, p2, p3. The algorithm searches for increment constraints. All
the three places are in different SCCs, so the algorithm first tries to enable t0
by borrowing one token for all three places. By the T-invariant t1, t2, . . . , t6 a
token is carried through places p1, p2, p3, which does not enable t0, but there are
intermediate markings where the enabling of t0 is closer. Continuing from any of
these intermediate markings, another token is borrowed on the places p1, p2, p3,
but t0 is not yet enabled. Here comes the different order of transitions into view:

– If the two tokens are carried through places p1, p2, p3 together, there are
intermediate markings that are closer to firing t0, because previously two
tokens were missing, now only one. Continuing from these markings a third
token is borrowed on places p1, p2, p3, enabling t0 and yielding a full solution.

– If the two tokens are carried through places p1, p2, p3 separately (i.e., a token
is carried through the places, while the other is left in p4, and this procedure
is repeated), there are no intermediate markings of interest, because two



tokens are still missing to enable t0. In this case the algorithm will not find
the full solution.

The order of transitions is non-deterministic, thus it is unknown which or-
der will be omitted. Therefore, in our approach we reproduce all the possible
firing sequences without subtree omission when a partial solution is skipped,
and check for intermediate markings in the full tree. Although this may yield a
computational overhead in some cases, we might lose full solutions otherwise.

New termination criterion. We have developed a new termination criterion,
which can efficiently cut the search space without losing any full solutions. When
generating increment constraints for a partial solution ps, as a first step the
algorithm finds the set of places P ′ ⊆ P where tokens are needed. Then it
estimates the number of tokens required (n). At this point, our new criterion
checks if there exists a marking m′ for which the following inequalities hold:∑

pi∈P ′

m′(pi) ≥ n

∀pj ∈ P : m′(pj) ≥ 0.
(2)

The first inequality ensures that at least n tokens are present on the places
of P ′ while the others guarantee that the number of tokens on each place is non-
negative. These inequalities define a submarking coverability problem. Using the
ILP solver, we can check if the modified form of the state equation (which we
discuss in Section 4.2) holds for this problem. If the state equation does not hold,
it is a proof that no such marking exists where we have the required number of
tokens on the places of P ′. Thus, ps can be omitted without losing full solutions.

This approach can also extend the set of decidable problems compared to
the former approach. Consider the Petri net on Figure 5 with the reachability
problem (1, 1, 0) ∈ R(PN, (1, 0, 0)), i.e., firing t0 to produce a token on p1. The
algorithm would add the T-invariant t1, t2 again and again to enable t0. Using
T-invariant filtering we cannot decide whether there is no full solution or we
lost it. Using our new approach we can prove that no marking exist where two
tokens are present on p0, therefore no full solution exists.

p1
p0

p2 t1

t0
t2

2

2

Fig. 5. Example net for the new filtering criterion



4.2 Extensions

We extended the algorithm to handle new types of problems. In this section we
present two further extensions: the CEGAR algorithm for solving submarking
coverability problems and checking reachability in Petri nets with inhibitor arcs.

Submarking coverability problem. In Section 2 we introduced predicates
in the form Am′ ≥ b, where A is a matrix and b is a vector of coefficients. In
order to use the state equation, this condition on places must be transformed to
a condition on transitions.

At first we substitute m′ in the predicate Am′ ≥ b with the state equation
m0 + Cx = m′, which results inequalities of the form (AC)x ≥ b − Am0. This
set of inequalities can be solved as an ILP problem for transitions. The extended
algorithm uses this modified form of the state equation, and expands it with
additional (jump or increment) constraints.

Petri nets with inhibitor arcs. The main problem with inhibitor arcs is
that they do not appear in any form in the state equation which is used as
an abstraction. Therefore, a solution vector produced by the ILP solver may
not be realizable because inhibitor arcs disable some transitions. In this case
tokens must be removed from some places. Our strategy is to add transitions to
the solution vector, that consume tokens from the places connected by inhibitor
arcs. Increment constraints are suitable for this purpose, but they have to be
generated in a different way:

1. The first step is to construct a dependency graph similar to the original one.
The graph consists of transitions that could not fire due to inhibitor arcs and
places disabling these transitions. The arcs of the graph have an opposite
meaning: an arc from a place to a transition means that the place disables the
transition, while the other direction means that firing the transition would
decrease the number of tokens on the place. Each source SCC of the graph is
interesting, because tokens cannot be consumed from them by another SCC.

2. The second step is to estimate the minimal tokens to be removed from each
source SCC. There are two sets of transitions as well, Ti ⊆ T and Xi ⊆ T .
If one transition in Ti becomes fireable, it may enable all the others in the
SCC, while the needs of transitions in Xi must be fulfilled at once.

3. The third step is to construct an increment constraint c for each source SCC
from the information of the set of places and the number of tokens to be
removed. This yields firing additional transitions (with r(t) = 0) to consume
tokens from these places.

When a partial solution is not a full solution, and there are transitions dis-
abled by inhibitor arcs, the previous algorithm is used to generate increment
constraint. If there are transitions disabled by normal arcs as well, both the
original algorithm and the modified version must be used, taking the union of
the generated constraints.

Inhibitor arcs also affect some of the optimization methods:



– Stubborn sets currently do not support inhibitor arcs.
– Using T-invariant filtering, an intermediate marking is now of interest when

it has less tokens on a place which is connected by inhibitor arc to a transition
that cannot fire.

– Our new termination criterion is extended to check whether a reachable
marking exists where the required number of tokens are removed.

5 Evaluation

We have implemented our algorithm in the PetriDotNet [1] framework. Ta-
ble 1 contains run-time results, where TO refers to an unacceptable run-time
(> 600 seconds). The measured models are published in [4], [11], [12]. In Ta-
ble 1(a) we have compared our solution to the original algorithm, which is im-
plemented in the SARA tool [2] (the numbers in the model names represent the
parameters). We have also measured a highly asynchronous consumer-producer
model (CP NR in the table).

Table 1. Measurement results for well-known benchmark problems

(a) Comparison to the original

Our
Model SARA algorithm

CP NR 10 0,2 s 0,5 s
CP NR 25 111 s 2 s
CP NR 50 TO 16s
Kanban 1000 0,2 s 1 s
FMS 1500 0,5 s 5 s
MAPK 0,2 s 1 s

(b) Comparison to saturation

Our
Model Saturation algorithm

Kanban 1000 TO 1 s
SlottedRing 50 4 s 433 s
DPhil 50 0,5 s 45 s
FMS 1500 TO 5 s

Our implementation is developed in the C# programming language, while
the original is in C. This causes a constant speed penalty for our algorithm.
Moreover, our algorithm examines more partial solutions, which also yields com-
putational overhead. However, the algorithmic improvements we introduced in
this paper significantly reduce the computational effort for certain models (see
the consumer-producer model). In addition, our algorithm can in many cases
decide a problem that the original one cannot.

We have also compared our algorithm to the well-known saturation-based
model checking algorithm [4], implemented in our framework [11]. See the results
in Table 1(b). The lesson learned is that if the ILP solver can produce results
efficiently (Kanban and FMS models), the CEGAR solution is faster by an order
of magnitude than the saturation algorithm. When the size of the model makes
the linear programming task difficult, it dominates the run-time, and saturation
wins the comparison.



6 Conclusions

The theoretical results presented in this paper are twofold. On one hand, we
proved the incompleteness of the iteration strategy of the original CEGAR ap-
proach by constructing a counterexample. We also constructed a counterexample
that proved the incorrectness of a heuristic used in the original algorithm. We
corrected this deficiency by improving the algorithm to detect such situations.
On the other hand, our algorithmic improvements reduce the search space, and
enable the algorithm to solve the reachability problem for certain, previously
unsupported classes of Petri nets. In addition, we extended the algorithm to
solve two new classes of problems, namely submarking coverability and handling
Petri nets with inhibitor arcs. We demonstrated the efficiency of our improve-
ments with measurements.
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