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Abstract
We report on an industrial use case of static callgraph reach-
ability analysis to improve WhatsApp Android app health.
We collaborated with engineers dedicated to app health to
annotate/specify the source code. We leveraged the Infer
static analyzer to prevent regressions during code changes
and to periodically find pre-existing issues on the latest revi-
sion. Within three months, the analysis prevented almost a
hundred regressions from being introduced and resulted in
fixes for a handful of pre-existing issues, including examples
with end-user measurable impact.

CCS Concepts: • Software and its engineering→ Auto-
mated static analysis.
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1 Introduction
WhatsApp is a messaging application serving more than
2 billion users in over 180 countries every day. One of Whats-
App’s goals is to provide fast and reliable communication,
including lower-end consumer devices and poor network
conditions. In order to achieve this goal, special emphasis
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needs to be put on app health and code quality. In this paper
we describe a static callgraph reachability analysis onWhats-
App Android app’s codebase. The analysis finds potential
issues where certain performance critical functions can end
up (transitively) calling computationally expensive functions.
In order to deploy such an analysis, we needed (1) to specify
functions of interest (performance critical and computation-
ally expensive ones), and (2) an automated tool that takes the
specification and the source code, and performs the analysis.

Specification is a well-known challenge in program analy-
sis: it is often hard to motivate developers to write specifi-
cations, especially at a large scale in a fast-paced company.
We tackled this challenge by collaborating with engineers
from a team specifically working on app health to provide
an initial set of specifications, which was then expanded by
other developers as we gradually rolled out the analysis.
The main challenge for the analysis is that it needs to be

fast enough to give timely feedback on code changes submit-
ted by developers, while also being sufficiently sound and
precise. To tackle this, we leveraged Infer [3, 4], a static analy-
sis platform with multiple language frontends and analyzers
(also called checkers). Infer had a so-called annotation reach-
ability checker, which could perform static callgraph reacha-
bility analysis based on in-code annotations. A distinguish-
ing feature of this checker is that it does not construct and
traverse a global callgraph, but uses Infer’s compositional
and interprocedural abstract interpretation framework. This
checker’s functionalities were mostly fit for our purposes,
but it was mostly unused and unmaintained. We “revived”
this checker and added some new features needed for our use
case (e.g., supporting regexp-based specification of library
functions). In addition, we formalized the algorithm of the
checker in this paper for the first time.
We deployed the analysis to run on every code change

(diff ) to prevent regressions, and also to run periodically on
the latest revision to find pre-existing issues. Over a period
of 3 months, Infer reported 174 issues on diffs with 92 being
fixed (53% fix rate). Furthermore, 7 pre-existing issues were
also fixed, which is uncommon, as Infer has traditionally
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been more successful at diff-time deployments [6]. One no-
table example issue found by Infer resulted in measurable
impact for end-users: app not responding (ANR) issues were
reduced by 0.56% in particular regions, and chat loading got
1.25% faster globally.

2 Background
Reachability. Given a program 𝑃 consisting of a set of

functions 𝐹 and sets of distinguished source functions 𝐹src ⊆
𝐹 and sink functions 𝐹snk ⊆ 𝐹 , the goal of reachability analy-
sis is to check if any source function can (potentially tran-
sitively) call a sink function, that is, whether an execution
exists in 𝑃 with a sequence of calls 𝑓1 → 𝑓2 → . . . → 𝑓𝑛
for some 𝑛 > 1, where 𝑓1 ∈ 𝐹src , 𝑓𝑛 ∈ 𝐹snk , and 𝑓𝑖 ∈ 𝐹 for
1 ≤ 𝑖 ≤ 𝑛. Reachability can be extendedwith an additional set
of sanitizers 𝐹san ⊆ 𝐹 imposing an extra condition 𝑓𝑖 ∉ 𝐹san
for 1 ≤ 𝑖 ≤ 𝑛. In other words, we are not interested in call
sequences that pass through any sanitizer function.

Example. Consider the program in Figure 1 with some-
thingOnTheUI being the single source and readFromData-
base being the single sink. Then, a sequence of calls some-
thingOnTheUI→ checkSomething→ readFromDatabase
exists from source to sink. However, if we consider check-
Something to be a sanitizer, then there are no source-to-sink
call sequences anymore.

1 @PerfCrit void somethingOnTheUI () {
2 checkSomething ();
3 }
4 void checkSomething () {
5 readFromDatabase ();
6 }
7 @Expensive void readFromDatabase () {
8 /* Slow stuff */
9 }

Figure 1. Example code with annotated functions.

Static callgraphs. As usual with non-trivial program
properties, callgraph reachability is an undecidable problem1

in theory. In this work, we use static callgraphs to solve
reachability in an approximate way. The static callgraph of a
program 𝑃 is a directed graph𝐺 = (𝐹, 𝐸) where the vertices
𝐹 consist of the functions of the program, and there is a
directed edge (𝑓1, 𝑓2) ∈ 𝐸 between functions 𝑓1, 𝑓2 ∈ 𝐹 if the
body of 𝑓1 contains a call instruction of the form 𝑓2 (. . .). An
approximate solution to the reachability problem is to check
if a path 𝑓1 → . . .→ 𝑓𝑛 exists in𝐺 where 𝑓1 ∈ 𝐹src , 𝑓𝑛 ∈ 𝐹snk ,
and 𝑓𝑖 ∉ 𝐹san for 1 ≤ 𝑖 ≤ 𝑛.
This approximation can be solved, e.g., by computing a

transitive closure of the graph [7]. However, it can report
1We can append a synthetic function call end ( ) to the end of a program 𝑃

and the reachability of end ( ) is equivalent to the halting of 𝑃 .

paths that are not feasible in any actual execution (e.g., calls
guarded by infeasible conditions) and also miss real call
chains (e.g., if dynamic dispatch or lambdas are involved).
For us, this is acceptable: we are not aiming for a sound over-
approximation. False negatives are acceptable as long as the
analysis is fast enough to run on every code change, and
can detect enough real issues with a sufficiently low level of
false positives to make an impact in practice.

3 Reachability Analysis with Infer
Infer [3, 4] is a static analysis framework that supports mul-
tiple language frontends (including Java and Kotlin) and
analyzer backends (checkers) through a common intermedi-
ate language [2]. One of Infer’s checkers is called annotation
reachability2 which can perform the aforementioned reach-
ability analysis of programs based on the static callgraph;
with a few practical differences and extensions. This checker
has been around in Infer for a while, originally developed to
solve similar problems on other Android apps, but – to the
best of our knowledge – this is the first paper to present it in
a formal way. As described later in this section, a key feature
of this algorithm is that it does not construct a global call-
graph, but rather uses compositional reasoning and abstract
interpretation. We have also added some improvements and
extensions to the checker to support our particular use case
at WhatsApp (Section 3.4).

3.1 Specification
As the name of the checker suggests, the sources, sinks and
sanitizers can be defined via sets of Java annotations. Given
the set of all annotations 𝐴, let 𝐴(𝑓 ) ⊆ 𝐴 denote the annota-
tions of a function3 𝑓 and let 𝐴src, 𝐴snk, 𝐴san ⊆ 𝐴 denote the
source, sink and sanitizer annotations, respectively. Without
the loss of generality, we can assume that no sink or source
annotation is a sanitizer at the same time (𝐴src ∩ 𝐴san = ∅
and 𝐴snk ∩𝐴san = ∅), as otherwise any path containing them
would be immediately sanitized. We can derive the set of
source, sink and sanitizer functions as follows: 𝐹src ≔ {𝑓 ∈
𝐹 | 𝐴(𝑓 ) ∩𝐴src ≠ ∅}, 𝐹snk ≔ {𝑓 ∈ 𝐹 | 𝐴(𝑓 ) ∩𝐴snk ≠ ∅} and
𝐹san ≔ {𝑓 ∈ 𝐹 |𝐴(𝑓 ) ∩𝐴san ≠ ∅}. Note that we only assume
that a source/sink annotation cannot be a sanitizer annota-
tion; a source/sink function can still be a sanitizer at the same
time if it has both source/sink and sanitizer annotations.
Additionally, the checker takes as input multiple sets of

sources, sinks and sanitizers (𝐴1
src, 𝐴

1
sn𝑘 , 𝐴

1
san), . . . , (𝐴𝑘

src, 𝐴
𝑘
sn𝑘 ,

𝐴𝑘
san), treating each tuple as an independent reachability

property (but solving all of them in one pass). For example,
the configuration in Figure 2 defines a single property with
one source, one sink and no sanitizers: (𝐴1

src = {@PerfCrit},
𝐴1
sn𝑘 = {@Expensive}, 𝐴1

san = ∅).

2https://fbinfer.com/docs/checker-annotation-reachability
3Infer’s Java/Kotlin frontend also looks at annotations from the enclosing
class and from overridden functions from base classes / interfaces.
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"annotation -reachability -custom -pairs": [{
"sources ": [" PerfCrit"],
"sinks": [" Expensive "]

}]

Figure 2. Infer’s annotation reachability configuration.

3.2 Analysis
The checker does not explicitly construct a global callgraph
to traverse. Instead, it formulates the problem in Infer’s com-
positional and interprocedural abstract interpretation frame-
work. Infer analyzes each function independently by propa-
gating an abstract state through its instructions to obtain a
summary which can then be applied in every calling context
(without having to re-analyze the callee). This also means
that the analysis does not need an entry point or a main
function: it can start from a set of arbitrary functions, and
dependencies are analyzed on-demand. As demonstrated in
the results (Section 4.3), this allows us to run the checker on
every code change at the scale of WhatsApp within a reason-
able time. However, recursion needs a special treatment (due
to circular dependency in the analysis): either a fixed-point
computation, or unrolling to a fixed depth. Infer currently
does an unrolling to a depth of one,4 i.e., performing an
under-approximation.

Abstract domain. In annotation reachability, an abstract
state 𝑠 ⊆ 𝐹 × N × 𝐹 × 𝐴 is a set of tuples, where a tuple
(𝑔, 𝑛, ℎ, 𝑎) ∈ 𝑠 represents the information that the current
function 𝑓 being analyzed calls some function 𝑔 on line 𝑛,
which then ends up calling sink ℎ, annotated with 𝑎 ∈ 𝐴𝑖

sn𝑘
for some 𝑖 . If 𝑔 = ℎ in a tuple, it means that the current
function 𝑓 calls a sink directly, whereas 𝑔 ≠ ℎ means that
the call is transitive. Intuitively, this abstract domain implies
that we only compute the relevant parts of the callgraph
(that can potentially be part of a source-to-sink call chain),
and each node only stores a single step towards a given sink.
Paths can be reconstructed later, and we have the option to
limit the number of paths per source/sink pair, allowing us
to scale to large codebases.

Instructions are traversed from the beginning of the func-
tion in-order, however, as described below, the join operation
and the transfer function is defined in a path- and flow-
insensitive way for scalability.5 The initial state 𝑠0 ≔ ∅ is the
empty set, the join operation is set union join(𝑠1, 𝑠2) ≔ 𝑠1∪𝑠2,

4Infer used to have fixed-point computation, but in practice, using an un-
rolling to a depth of one still found the majority of the relevant issues in
a simpler and more efficient way, that is, the benefits of deeper unrolling
were too small compared to the performance loss.
5We have also experimented with a path- and flow-sensitive underapproxi-
mate checker called Pulse [13], but within our time constraints, it had too
many false negatives.

and the summary of a function 𝑓 – denoted by sum(𝑓 ) – is
the abstract state at the exit point6 of 𝑓 .
The transfer function 𝑇 (𝑠, instr𝑛) takes an abstract state

𝑠 (the precondition) and an instruction instr𝑛 at line 𝑛, and
returns a new abstract state that encapsulates the effects
(postcondition) of executing instr𝑛 on 𝑠 . If instr𝑛 is not a
call, or the callee cannot be resolved statically (e.g., some
unknown external function), then 𝑇 (𝑠, instr𝑛) ≔ 𝑠 , that is,
the state does not change. If instr𝑛 is a call to some function𝑔
then the state gets extended with direct and transitive entries
corresponding to 𝑔. Direct entries 𝑠𝑑 are added if 𝑔 itself is
a sink, and transitive entries 𝑠𝑡 are added for each entry in
the summary of 𝑔 (unless 𝑓 or 𝑔 is a sanitizer). Formally,
𝑇 (𝑠, instr𝑛) = 𝑠 ∪ 𝑠𝑑 ∪ 𝑠𝑡 where
• 𝑠𝑑 ≔ {(𝑔, 𝑛, 𝑔, 𝑎) |𝑎 ∈ 𝐴(𝑔) ∧∃𝑖 .𝑎 ∈ 𝐴𝑖

𝑠𝑛𝑘 ∧ 𝑓 , 𝑔 ∉ 𝐹 𝑖san}
and
• 𝑠𝑡 ≔ {(𝑔, 𝑛, ℎ, 𝑎) | (ℎ′, 𝑛′, ℎ, 𝑎) ∈ sum(𝑔)∧∃𝑖 .𝑎 ∈ 𝐴𝑖

𝑠𝑛𝑘∧
𝑓 , 𝑔 ∉ 𝐹 𝑖san}.

3.3 Reporting
Once we finish analyzing a function 𝑓 and it happens to be a
source (𝑓 ∈ 𝐹 𝑖src for some 𝑖), we check its summary sum(𝑓 ) to
report if some sink 𝑔 can be reached. In practice, we can have
multiple sets of sources/sinks/sanitizers so we also report
which exact annotations are responsible for the call chain.
Formally, we report {(𝑓 , 𝑎𝑓 , 𝑔, 𝑎𝑔) | (ℎ, 𝑛, 𝑔, 𝑎𝑔) ∈ sum(𝑓 ),
∃𝑖, 𝑎𝑓 . 𝑎𝑓 ∈ 𝐴𝑖

𝑠𝑟𝑐 ∧ 𝑎𝑔 ∈ 𝐴𝑖
𝑠𝑛𝑘 ∧ 𝑓 ∉ 𝐹 𝑖san}. A reported tuple

(𝑓 , 𝑎𝑓 , 𝑔, 𝑎𝑔) should be interpreted as “source 𝑓 annotated
with𝑎𝑓 calls sink𝑔 annotatedwith𝑎𝑔”. In Infer’s terminology,
this is called an issue.
Summaries also allow us to reconstruct all distinct paths

between a source and a sink. However, in practice, this can
lead to an exponential number of paths, so the checker only
reports one path per issue. A path for an issue (𝑓 , 𝑎𝑓 , 𝑔, 𝑎𝑔)
can be reconstructed recursively:
• path(𝑓 , 𝑔, 𝑎𝑔) ≔ 𝑓 → 𝑔 if ∃𝑛 ∈ N with (𝑔, 𝑛, 𝑔, 𝑎𝑔) ∈
sum(𝑓 ),
• path(𝑓 , 𝑔, 𝑎𝑔) ≔ 𝑓 → path(ℎ,𝑔, 𝑎𝑔) for some entry
(ℎ, 𝑛, 𝑔, 𝑎𝑔) ∈ sum(𝑓 ) otherwise. In practice, the check-
er picks the entrywith the lowest𝑛, i.e., the first callsite
that leads towards the sink.

Consider the example code and configuration in Figures 1
and 2 and let us abbreviate each function with its initial letter.
The summary sum(r) = ∅ is empty because r does not con-
tain any call. The summary sum(c) = {(r, 5, r, @Expensive)}
contains a single direct call to a sink: c calls r directly on
line 5. The summary sum(s) = {(c, 2, r, @Expensive)} con-
tains a single transitive call to a sink: s calls r indirectly
via the call to c on line 2. The only source is s, so Infer
would report a single issue: (s, @PerfCrit, r, @Expensive).

6Infer represents functions as control-flow graphs with one common exit
node.
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The path is reconstructed as path(s, r, @Expensive) = s→
path(c, r, @Expensive) = s→ c→ r.

3.4 Checker Improvements
In order to apply Infer to our use case at WhatsApp An-
droid, we had to make some improvements to the annotation
reachability checker itself.

Regular expressions. We extended the checker so that
functions can be treated (modeled) as if they were anno-
tated, based on regular expressions over their (fully quali-
fied) names. This was necessary for library functions (e.g.,
Android or Java libraries) where the source code is exter-
nal and annotations could not be added directly in the code.
This allows us to detect call paths where the source is in
the application code, but the sink is several call steps inside
a library. In addition, this also helped to specify a larger
set of functions in a concise way (e.g., marking all UI event
handler overrides as sources). Figure 3 shows an example,
where the configuration specifies that any method (.*) of
class MyClass in package com.library should be treated
(modeled) as if it was annotated with @Expensive. As a side
benefit, this opened up the support for languages without
annotations.

"annotation -reachability -custom -models ": {
"Expensive ": ["com\. library \. MyClass \..*"]

}

Figure 3. Using regular expressions to model annotations.

Path minimization. Sources or sinks can also appear as
intermediate steps in a path. Such paths contain other paths
as a sub-path and it might be desirable to only report the
shortest, because eliminating that call chain also removes
the extended paths. We formalize this by defining minimal
source and sink paths. A path 𝑓1 → . . .→ 𝑓𝑛 (where 𝑓1 ∈ 𝐹src
and 𝑓𝑛 ∈ 𝐹snk) is source-minimal if 𝑓𝑖 ∉ 𝐹src for 𝑖 > 1 and
sink-minimal if 𝑓𝑖 ∉ 𝐹snk for 𝑖 < 𝑛. In other words, the only
source in a source-minimal path is the first function, and
the only sink in a sink-minimal path is the last function. In
practice though, we are using annotations: given an issue
(𝑓1, 𝑎src, 𝑓𝑛, 𝑎snk) with a path 𝑓1 → . . . → 𝑓𝑛 , we check if 𝑓1
is the only function of the path annotated with 𝑎src (source-
minimal) and if 𝑓𝑛 is the only function annotated with 𝑎snk
(sink-minimal). Formally, 𝑎src ∉ 𝐴(𝑓𝑖 ) for 1 < 𝑖 ≤ 𝑛must hold
for source-minimal paths, and𝑎snk ∉ 𝐴(𝑓𝑖 ) for 1 ≤ 𝑖 < 𝑛must
hold for sink-minimal paths. Note that we only compute one
path for each issue, so an issue is source/sink-minimal if and
only if its single corresponding path is source/sink-minimal.

Loop highlighting. Consider a source to sink path 𝑓1 →
. . .→ 𝑓𝑛 where 𝑓𝑖 calls 𝑓𝑖+1 in a loop (for some index 𝑖). We

wanted to flag such paths in a special way because execut-
ing something computationally expensive within a loop can
have a higher impact than just executing it once. Infer’s inter-
mediate language is based on control flow graphs (CFG) and
there is an implementation of Tarjan’s strongly connected
components algorithm [16] to compute loops. We added an
option to the analyzer that checks for each edge 𝑓𝑖 → 𝑓𝑖+1
whether the CFG node in 𝑓𝑖 that contains the call to 𝑓𝑖+1 is
part of a loop. If yes, the edge 𝑓𝑖 → 𝑓𝑖+1 is highlighted with
a special tag in the trace during reporting.

4 Reachability Analysis for WhatsApp
Android

The main goal of the use case at WhatsApp Android is to
detect potential issues where certain performance critical
functions can end up (transitively) calling computationally
expensive functions. To achieve this goal, we partnered with
engineers from WhatsApp to annotate the code, configure
and deploy the checker, gather feedback and make improve-
ments in an iterative process.

4.1 Specification and Configuration
As of writing the paper, there are two reachability properties
(sets of sources, sinks and sanitizers) with 8 annotations and
11 regular expressions in total (see breakdown in Table 1).
The sources, sinks and sanitizers are defined by Android en-
gineers, including a dedicated team responsible for the app’s
health. In the first property, source annotations usually refer
to something performance critical, such as event handlers
on the user interface (overriding functions from Android UI
libraries). Sink annotations correspond to (potentially) com-
putationally expensive functions, such as worker threads
and file operations (in Java libraries). Sanitizers include func-
tions that are not shipped in production, such as tests, debug
utilities (e.g., logging) and Java preconditions. The second
property aims to find call chains where the source and sink
has incompatible threading annotations (e.g., worker thread
as source calling main thread as sink).

Table 1. Number of annotations and regular expressions
with their coverage over WhatsApp Android’s functions.

Prop. Annotations Regexps Coverage
src snk san src snk san src snk san

#1 1 2 2 2 3 3 0.356% 2.689% 0.198%
#2 2 1 0 0 3 0 16.267% 0.002% 0.000%

Specifications partially reused existing annotations (e.g.,
@WorkerThread), but some annotations were added in-code
just for the purpose of this checker (e.g., known hot spots
related to chat loading). One disadvantage of using regular
expressions in Infer’s configuration file is that it can get
out of sync with the codebase. However, we mostly used
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regular expressions for well-established Android/Java library
functions that we don’t expect to change often. Table 1 shows
the percentage of WhatsApp Android’s functions that are
covered as source, sink or sanitizer by the two properties.
The second property has a significantly higher coverage due
to reusing more of the threading annotations already present
in the code. Note that at the scale of WhatsApp Android’s
codebase, even small percentages amount to a non-trivial
number of functions.

4.2 Deployment
Infer has two kinds of deployments in general: continuous
and diff-time. Continuous scans analyze the latest revision of
a repository periodically (typically a few times every day).
With a few exceptions where tasks are filed and triaged to
code owners [8, 11], these runs are only visible on inter-
nal dashboards for Infer developers to get an idea on the
baseline of pre-existing issues and to experiment with new
checkers. Diff-time deployments, on the other hand, analyze
every code change (diff ) and report newly introduced issues
inlined as comments during the code review process (along
with feedback from other automated tools and human re-
viewers). Developers can then submit a new version of the
diff, triggering a new run of Infer. We measure fix rate by
checking if issues reported in an intermediate version of the
diff disappear in the final version that gets merged to the
main branch. Note that fix rate is only a proxy to estimate
true positive rate, but in practice it works well because (1)
it can be measured automatically, and (2) it indicates the
actionability of the checker from a developer’s perspective.

Continuous analysis. Wefirst deployed continuous runs
of the reachability analysis, allowing us to get an idea on the
baseline of pre-existing issues and to iteratively add more
annotations, fine tune the checker, and make improvements
to Infer. Overall, most of the issues reported by Infer were
technically true positives (a path from source to sink indeed
exists). However, without path minimization, Infer reported
around7 12500 issues, which was deemed overwhelming,
even if they were all true positives. Applying source and
sink minimization individually reduced the number of is-
sues to approximately 10600 and 1600 respectively. Applying
both resulted in roughly 1100 issues. We concluded that sink
minimization is sufficient as it already reduces the issues
to a manageable volume. In addition, sources are usually
closer to the business logic of code owners, whereas sinks
are typically in common code or lower level libraries. There-
fore, not minimizing on the source side allows engineers to
fix the issues in (or closer to) the code they own. While this
might not fix all related issues at once, developers are usually
more confident in changing the code they own. Engineers
also added further sanitizers to suppress certain reports that
7Due to the codebase evolving, and internal timeouts, there is a small
fluctuation in the number of issues reported on the latest revision.

were technically true positives, but still acceptable because
of known mitigating factors.

Diff-time analysis. Once we were satisfied with the qual-
ity and volume of reported pre-existing issues, we started
rolling out the analysis on diffs. We first enabled a so-called
shadow mode where the analysis was running for all code
changes, but issues only showed up on an internal dashboard
for us and the app health team to assess. Then we gradually
enabled reporting for a few dozen engineers who opted in
as early adopters. We set up channels to gather feedback
and monitored fix rate. After a few weeks, we rolled out the
analysis to all WhatsApp Android engineers.

4.3 Results
Pre-existing issues. Interestingly, as engineers examined

the reports from continuous scans, they have found various
pre-existing issues that were likely to have a high impact
on performance. For such issues, they created tasks, first
manually, then later in a semi-automated way, and triaged
them to the appropriate code owners to consider fixing. As
of writing the paper, 59 tasks have been filed with 7 fixed
already (closed with a diff attached). One notable example
was directly linked to ANRs (app not responding) from pro-
duction logs. Infer’s call trace provided insight to why the
ANRs are happening. The fix reduced ANRs by 0.56% in cer-
tain regions where the feature was enabled and also resulted
in an end-user measurable 1.25% speedup in chat loading
speed globally.8

Diff-time reports. Over a period of 3 months, Infer re-
ported 174 issues on code changes in total, with 92 being
fixed (53% fix rate). Our analyis is on par with other Infer
deployments, typically having a fix rate between 40% and
60%. We looked at some of the unfixed issues and categorized
them in the following main groups.

There are diffs that added further source/sink annotations
with the intention to be able to see pre-existing issues (with-
out fixing them) and to prevent newly introduced issues.
Such diffs caused Infer to find new issues by design.
We have also seen diffs that converted certain modules

from Java to Kotlin. Infer has some mechanisms to identify
if an issue moves around (e.g., lines shifting, or class renam-
ings), however, moving to a new language was beyond the
capabilities of these heuristics.

We encountered false positives due to pre-existing issues
being reported as if they were newly introduced. One notable
category was related to non-deterministic analysis in case of
mutually recursive function calls. As an example, consider
a static callgraph of the form src → 𝑓 ⇄ 𝑔 → snk. As
mentioned before, Infer analyzes recursive calls to a depth
of one, which can intuitively be thought of as having to “cut”

8Measured by a controlled experiment where one group had the fix enabled
and the other group did not have it.
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edges from the callgraph until it becomes acyclic. It is clear
that if 𝑓 ← 𝑔 is cut, Infer still sees the issue (path from
source to sink exists), but if 𝑓 → 𝑔 is cut, then the issue
is not found. The edge to be “cut” depends on the order in
which functions are scheduled to be analyzed, which can
have some non-determinism, especially if the surrounding
code changes. On each diff, Infer runs twice: once for the
current revision and once for the parent, and computes the
difference of issues to only report newly introduced issues.
Our observations suggest that a different scheduling order
for the current/parent revision can cause an issue to be only
seen in one of the runs. As a quick workaround, we mitigated
this by switching to a more deterministic scheduler (the
issue is either found or missed, but it is consistent across
runs). However, if this causes too many missed issues, we
can consider bringing back Infer’s fixed-point computation
(the issue is found regardless of scheduler ordering).

Finally, we have seen false positives related to flow- and
path-insensitivity. Two simplified examples are presented in
Figure 4: a call to a sink is guarded by a condition that pre-
vents it from happening in production, and a pair of special
function calls “enclose” a block that should be treated as a
sanitizer. These could be mitigated by making the analysis
flow- and path-sensitive, but that would come with its own
downsides (e.g., path explosion).
Note that we did not explicitly count false positives, we

only sampled unfixed issues and use the fix rate as a measure
of checker quality instead.

void source () { // Needs path -sensitivity
if (is_debug ()) sink ();

}
void source () { // Needs flow -sensitivity

beginSanitizing ();
sink ();
endSanitizing ();

}

Figure 4. Example false positives.

Discussion. Currently, we mostly rely on engineers’ do-
main knowledge to identify which issues have a truly signifi-
cant impact on performance. Post-fix analysis is possible via
experiments, as described earlier with the example directly
linked to ANRs. We have also not yet measured whether
loop highlighting contributes to higher rate of fixes. In the
future we plan to improve actionability and prioritization by
using runtime tracing data to identify and flag if a reported
call chain is on a hot path (executed often).

Analyzer performance. It is not straightforward to inde-
pendently assess the performance of the analyzer, because
production deployments of Infer (1) rely heavily on caching

when compiling the source code into the intermediate repre-
sentation, and (2) have multiple checkers running in parallel
(not just annotation reachability). Overall, the p90 compi-
lation and analysis times for continuous runs are 33 and
53 minutes, respectively, including all checkers and the full
WhatsApp Android repository, consisting of millions of lines
of Java and Kotlin code. Annotation reachability alone (with-
out compilation) takes around 15 minutes. On diffs, the p90
total execution time of Infer is 32 minutes, including compi-
lation and analysis for parent and current revisions, with all
checkers, but limited to the changed files9 (and their depen-
dencies). The key takeaway from these numbers is that the
analysis is fast enough (1) to run multiple times a day in con-
tinuous mode, (2) to provide timely feedback on developers’
diffs, and (3) annotation reachability is not a bottleneck.

5 Related Work
Samhi et al. [14] survey various Android static analysis tools
that compute a callgraph. They show that tools fail to cover
at least 40% of the calls that can happen in runtime. Infer – in-
cluding our analyzer – targets bug finding and not soundness,
and even with our static approach we are finding interest-
ing bugs. Nevertheless, it would be interesting to compute
metrics on coverage and missed bugs.
There are various static taint analysis tools for Android,

such as FlowDroid [1] or Difuzer [15]. While these tools
employ a callgraph in the background, the primary purpose
is to track data flow. ACID [10] relies on callgraphs to detect
API invocation and callback incompatibility issues. ARP-
DROID [5] and NatiDroid [9] focus on security properties
(permissions for API invocations). NatiDroid also extends
control-flow analysis to native libraries.

Yang et al. [17] proposes a method to enhance the control
flow graph with edges corresponding to events and callbacks,
which are traditionally missing from static graphs. In our use
case, event handlers are usually the entry points of a path
(sources) so we don’t have to track where they are invoked
from. Midtgaard and Jensen [12] approximate interprocedu-
ral control-flow using abstract interpretation. Their main
focus is on first class functions and tail call optimization,
which are not prevalent at the moment in our use case.

6 Conclusions
We reported on our experience on applying static callgraph
reachability analysis on WhatsApp Android’s codebase to
improve app health and performance. Just within its first 3
months, the analysis prevented 92 issues from being intro-
duced, and resulted in fixes for 7 pre-existing issues, includ-
ing an example with end-user measurable impact.

9As described in Section 3.2, Infer’s checkers are modular and compositional:
they can start from an arbitrary set of functions – for example, functions
in the files touched by the code change – and transitively find and analyze
their dependencies as needed.
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