Solc-Verify: A Modular Verifier
for Solidity Smart Contracts

Akos Hajdu!2, Dejan Jovanovié!

ISRI International
’Budapest University of Technology and Economics

SRI International

© 2019 SRl International. All Rights Reserved. Proprietary

Introduction

SRI International

© 2019 SRl International. All Rights Reserved. Proprietary

Blockchain

= Records transactions : —— > : PR > : a——
= Blocks linked by cryptographic hash - ~ - ~ -
= Permanent and trusted

- Decentralized ledgers L 4
= No trusted central party E’I

= Consensus protocol ;I .’I

= Example: Bitcoin

= Users have balances :;I = :il

= Transactions transfer coins :il

© 2019 SRl International. All Rights Reserved. Proprietary SRI Ir‘ter‘r‘atior‘alE

Distributed Computing Platforms

= Ledger stores data and code

= Smart contracts l
= Addresses, balances = \
. OX73f88d b=
= Transactions execute contract code

. . Oxa&c943
= Operate on data, Interactions

= Consensus: identical execution

:=I o0

= Use cases L: Q b

= Tokens, multi-sig wallets, loT, supply chains 0xa9036b

0x236d3e
= Example: Ethereum

© 2019 SRl International. All Rights Reserved. Proprietary SRI Internationali

Programming Ethereum: Solidity

SimpleBank {
State variable (address=>uint) user_balances;

deposit() {
user_balances]| .sender] += .value;

withdraw() {
uint amount = user_balances]| .sender];
if (amount > 0 && .balance >= amount) {
(bool ok,) = .sender.call.value(amount)("");

if ('ok) revert();
user_balances| .sender] = 0; A

© 2019 SRl International. All Rights Reserved. Proprietary SRI |nte|"nati0na|®

More Bugs

@00 |08 Ey Jordani Pearson Now 7 2007, 11:24am

A Hacking of More Than $50 Someone ‘Accidentally’ Locked
Million Dashes Hopes in the Away $150M Worth of Other

World of Virtual Currency People's Ethereum Funds

By Nathaniel Popper Shut down of O.X Ex?hange v2.0 able.
contract and migration to patched
June 17, 2016 Version

Hacked. Again

A hacker on Friday siphoned more thar ‘@’ Will Warren in 0x Blog
hllet was hacked again:

Jul 13 - 2 min read

from an experimental virtual currency

Today (7/12) at approximately 4:30 PM PT, we were made aware of a ecurity- alert.html

potential exploit in the 0x v2.0 Exchange contract by a third-party security

ERE TECHMNOLOG

Ba tCh Ove r ﬂ ow E}{p I Oi t { researcher samczsun. This vulnerability would allow an attacker to fill , fu nds can be moved out o f the { ANY Par If_}'} multi-

certain orders with invalid signatures. This vulnerability does not effect

E‘the reum TO ke ns M aj o the ZRX token contract; your digital assets are safe.
Deposits

/companies/ICOs are using Parity-generated multisig wallets.
a Sam Town B Aprl 25, 2018 (© 3 min read ol 5827 Views

is frozen and (probably) lost forever.

© 2019 SRl International. All Rights Reserved. Proprietary SRI Internationalg

Motivation

= New paradigm for developers » Existing approaches
= Semantic misalignments = Vulnerability patterns: MythX, Slither, ...
- Open world = Theorem provers: KEVIM, Scilla, ...

= Finite automata: FSolidMV, ...
= Translation to SMT: Zeus, VeriSol, ...

= Publishing a contract == bug bounty

= Permanent

= No reverting / patching - Limitations

= Expressiveness
= User-friendliness
= False alarms, missed bugs

Verification needed - Manual actions

= Consequences
= Real assets / money

© 2019 SRl International. All Rights Reserved. Proprietary SRI Ir“ter'r‘a'tior‘alE

Our Goal

= Provide a practical tool
= Check high-level, user-specified properties
= Strike a balance between

Expressiveness User friendliness

Wide range of specifications Formal methods expertise
to be expressed not required

Automation

No user interaction required

Soundness, precision

No false alarms, no missed bugs

© 2019 SRl International. All Rights Reserved. Proprietary SRI Ir“ter'r‘a'tior‘alE

Solc-Verify

SRI International

© 2019 SRl International. All Rights Reserved. Proprietary

Overview

Extended k
Solidity | = =)
compiler

Boogie program Verification Verification

+ traceability - results results
Ve”f"':?t'on for contract
conditions

A

Map back
results

Verifier
Boogie

Solidity contract
+ specification

SMT solver
Z3/Yices2/C\VC4

© 2019 SRl International. All Rights Reserved. Proprietary SRI Internationalg

Overview

h

Solidity contract
+ specification

© 2019 SRl International. All Rights Reserved. Proprietary SRI Ir“ter'r‘a'tior‘alE

Specification

= Solidity provides
= require, assert

- Our annotation language 266, 0 At)
X = X + n;
= Features require(x >= y);
- Pre/postconditions }
= Contract level invariants
: : add(int n)
= Loop invariants .
e . . require(n >= 0);
= Solidity expressions (side effect free) add to x(n);
- Scope of the annotated element _ -
= Quantifier free whiie Ly < xJ 1

= + 1'
- Sum over collections (see later) y =Y 5

= Might extend as needed

© 2019 SRl International. All Rights Reserved. Proprietary

SRI International’

Overview

Extended k
Solidity | = =)
compiler

Boogie program
+ traceability

Verifier

Boogie

© 2019 SRl International. All Rights Reserved. Proprietary SRI Internationali

Verification

= Functional correctness w.r.t completed transactions
= Expected failure: explicit guards (require, revert)
= Unexpected failure: assertion, overflow

= Specification violation: pre/postconditions, invariants
= Reentrancy: check invariant at external call

pre post

transfer()

« Modular verification
= pre \ body - post
= Replace calls with their specification
= Discharge verification conditions to SMT solver

© 2019 SRl International. All Rights Reserved. Proprietary SRI Ir“ter'r‘a'tior‘alE

Translation

SimpleBank {
State variables = 1D global heap (address=>uint) user_balances;

Functions = procedures {

. . user balances .sender] += .value;
Extra semantics of the blockchain) ="]
= E.g., balances, payments }

var _balance: [address]int;

Similar to program verification,

but much more in the details var user_balances: [address][address]int;
= Blockchain semantics
. Message passing procedure deposit(] this: address,

_msg_sender: address,
_msg_value: int) {

_balance[_this] += msg value;

user_balances| _Tthis]|[_msg sender] += _msg value;

}

= Transactional behavior

© 2019 SRl International. All Rights Reserved. Proprietary

SRI International’

Arithmetic — Model of Computation

= Solidity = solc-verify

8-256 bit, overflow Integers (SMT) Bitvector (SMT) Modular

int x 255;

int X 255; bv8 x = 255bv8;

int y = 1;
(x +y) % 256 == 0,

bv8 y = 1bvS8;
X + y == 0bv8;

l’» int y = 1;

X +y == 256;

Not precise Not scalable Precise & scalable

256 bits default
(see example later)

= Checking for overflows
= Range check of every operation

- False alarms =T T
. uint x, uin
- Compute precise & unbounded, |EEEEERNIR g

compare at end of block require (z >= X);
- No alarm if developer checks }

int z = (x + y) % 255;
int z60 = X + y;

assume (z >= x);

assert (z == z0); v

SRI International’

© 2019 SRl International. All Rights Reserved. Proprietary

Arithmetic — Sum of Collections

= Invariant over sum of collections
= Common in wallets, tokens (ERC20) SimpleBank {

(address=>uint) user_balances;

- Not expressible in Solidity/FOL RRRTe, {

= Our abstraction R
= Shadow variable for each collection
= Update shadow with collection

© 2019 SRl International. All Rights Reserved. Proprietary SRI Intel"nationar

Examples and Demo

SRI International

© 2019 SRl International. All Rights Reserved. Proprietary

Annotated Contracts — Reentrancy Detection (DAO)

= Report every external call?
= False alarms

SimpleBank {
(address=>uint) user_balances;

= Contract invariant deposit () {

= Does not hold at external call user_balances[msg.sender] += .value;

= Fixed version: deduct balance first)

= No false alarm, invariant holds withdraw() {
uint amount = user_balances]| .sender];

if (amount > 0 && .balance >= amount) {
(bool ok,) = .sender.call.value(amount)("");

if (!'ok) revert();
DE O user_balances]| .sender] = 0;

© 2019 SRl International. All Rights Reserved. Proprietary SRI Intel"nationar

Annotated Contracts — Overflow Detection (BEC token)

Integers: cannot detect ract BecToken {
using SafeMath for uint256;

Range check after every uint256 totalSupply;
operation: false alarms (address => uint256) balances;
batchTransfer(address[] _receivers, uint256 _value) {

Bitvectors: scale up to 16 bits (Z3)

uint cnt = receivers.length;
Modular arithmetic, delayed uint256 amount = uint256(cnt) * _value; A

require(cnt > 0 && cnt <= 20);

checks: overflow reported, no
P require(_value > 0 && balances| .sender] >= amount);

other false alarms

_] balances| .sender] = balances]| .sender].sub(amount);
= Fixed version: no alarms

Annotations: high-level property

proved for (uint i = 0; i < cnt; i++)
balances[receivers[i]] = balances[_receivers[i]].add(_value);

DEMO

© 2019 SRl International. All Rights Reserved. Proprietary SRI |nte|"nati0na|®

Unannotated Contracts

= 37 531 contracts m
<

= 7 836 accepted by compiler 0.4.25

= Roughly 50% can be processed uint z = x + y;
= Small differences between encodings assert (2 >= X);

- Missing features: structs, enums, assert (now >= saleEnd):

Etherscan

special members, returning arrays, ...

assert (.sender == owner);

= No annotations

- Require, assert, overflows bool ok = .sender.call("...");

= Inconsistent usage of assert and require EEESEECIIF

© 2019 SRl International. All Rights Reserved. Proprietary SRI Intel"nationar

Unannotated Contracts — Example

= VestChain

- If guard against overflow = require
- If implicit assumption on fixed-cap =2 explicit invariant

uint256 totalSupply;
(address => uint256) holders;

transfer(address _to, uint256 val) {
require(holders| .sender] >= _val);
require(.sender != to);
assert(_val <= holders| .sender]);

holders| .sender] -= _
holders[to] += _val;

assert(holders[_to] »>= _val);A

© 2019 SRl International. All Rights Reserved. Proprietary SRI International®

Unannotated Contracts — Example

= FoodStore
= QOverflow

© 2019 SRl International. All Rights Reserved. Proprietary

¥

buyFood(uint32 bundles) {
uint cost = bundles * price;
require(.value >= cost);
uint fundsExcess = .value - cost;
if (fundsExcess > 1) {
.sender.transfer(fundsExcess);

¥

SRI International’

Conclusions

SRI International

© 2019 SRl International. All Rights Reserved. Proprietary

Conclusions

Solc-Verify
= Modular verifier for smart contracts int x; icnt{ "
= Specification annotations
- Translation to Boogie/SMT

add_to_x(int n)

= Properties Y = x 4 s
= Express high-level properties in user-friendly way FEGUILTEE o=)8
= Sound and automated backend
- Current state e S s
= Open source, under development add_to_x(n);
= Up-to date with latest compiler while (y < x) {y =y + 1; }

= Support for structs, access control specs, ...
Future work

= Cover missing Solidity features) w
- Translation validation github.com/SRI-CSL/solidity

= |nvariant inference

© 2019 SRl International. All Rights Reserved. Proprietary SRI Intel"nationar

SRI International

© 2019 SRl International. All Rights Reserved. Proprietary

Translation

1| contract A { 1| var x: [address]int;

2 int public x; 2| procedure set(_this: address, _x: int) {

3 function set (int _x) public { x = _x; } 3 x := x[_this :=_x];

41| } 4| }

5| contract B { 5| var a: [address] address;

6 A a; 6 | procedure setXofA(_this: address, x: int) {
7 function setXofA(uint x) public { a.set(x); } 7 call set(al[_this], x);

8 function getXofA () public returns (uint) { 8| }

9 return a.x(); 9| procedure getXofA(_this: address) returns (r: int) {
10 ¥ 10 r := x[a[_this]];
11| } 11| }

© 2019 SRl International. All Rights Reserved. Proprietary SRI Ir“ter'r‘a'tior‘alE

HO QWU kWK

==

Translation

contract Wallet {
address owner;

modifier onlyOwner () {
require (msg.sender == owner);

}

function receive () payable public {
// Actions could be performed here

}

function pay(address to,

public onlyOwner {

to.transfer (amount) ;

uint amount)

}
}

© 2019 SRl International. All Rights Reserved. Proprietary

G WK =

© o0~

10
11
12
13
14

var _balance: [address]int;

var owner: [address]address;
procedure receive(_this:
_msg_value: int) {
_balance := _balance[_this :=
// Actions could be performed here

address,

}

procedure pay(_this: address,
int, to: address, amount: int) {
assume (_msg_sender owner [_this]) ;
assume(_balance[_this] >= amount);
_balance := _balance[_this :=
_balance := _balancel[to :=

_msg_sender:

}

_msg_sender:

_balance [_

_balance[_this] -
_balance[to] + amount];

address,

this] + _msg_valuel;

address, _msg_value:

amount] ;

SRI International’

Unannotated Contracts

= PreSale
= Assertion checks stronger condition, can fail

= Weaker condition = false alarm due to modular reasoning
« Lift to contract invariant

= Use require in the beginning

: uint256 maxEther = 1000
and assert in the end

uint256 etherRaised =

function () {
assert(etherRaised < maxEther);

require(.value != 0);
require(etherRaised + .value <= maxEther);

etherRaised += .value;

¥

© 2019 SRl International. All Rights Reserved. Proprietary SRI Intel"nationar

Unannotated Contracts

= MainframeTokenDistribution
= QOverflow

totalDistributed;

distributeTokens(address tokenOwner, address[] recipients, uint[] values) onlyOwner {
require(recipients.length == values.length);
for(uint 1 = @; 1 < recipients.length; i++) {
if(values[i] > @) {
require(mainframeToken.transferFrom(tokenOwner, recipients[i], values[i]));
totalDistributed += values[i];

A

© 2019 SRl International. All Rights Reserved. Proprietary SRI |nternati0na|®

Etherscan

Encoding int bv mod mod-overflow
Translated 4096 3919 3926 3926
cved 4090 (0.71s) | 3837 (0.99s) | 3921 (0.72s) | 3911 (0.79s)
YICES2 3892 (1.15s) | 3854 (0.86s) | 3903 (0.75s) | 3859 (0.87s)
Z3 3897 (1.24s) | 3831 (1.10s) | 3892 (0.87s) | 3894 (0.88s)

© 2019 SRl International. All Rights Reserved. Proprietary SRI Ir“ter'r‘a'tior‘alE

