
Compositional Static Callgraph Reachability
Analysis for WhatsApp Android App Health

Ákos Hajdu
Meta

SOAP@PLDI 2025

Roman Lee
Meta

Gavin Weng
Meta

Nilesh Agrawal
Meta

Jérémy Dubreil

Motivation

Performance critical functions (transitively)
calling computationally expensive ones?

2

Challenges

Specification
What’s performance critical and what’s
computationally expensive?

void somethingOnTheUI() {
 checkSomething();
}

void checkSomething() {
 readFromDatabase();
}

void readFromDatabase() {
 /* Slow stuff */
}

Analyzer
Automated and fast enough to give
feedback on code changes

Reachability

3

Source to sink call chain without sanitizer
Approximate solution: static callgraph

a() b()

c()

d()

e()

f()

g()

src1()

src2()

snk1()

snk2()

san()

Infer

Language frontends
C, C++, Objective-C, Java/Kotlin, C#, Erlang

Open-source static analysis platform
Developed at Meta - fbinfer.com

Checkers
Memory safety, data races, deadlocks,
temporal properties, annotation reachability, …

4

5

Annotation reachability - Specification

Java annotations in code

@PerfCrit
void somethingOnTheUI() {
 checkSomething();
}

void checkSomething() {
 readFromDatabase();
}

@Expensive
void readFromDatabase() {
 /* Slow stuff */
}

"annotation-reachability-custom-pairs":
[{
 "sources": ["PerfCrit"],
 "sinks": ["Expensive"]
}]

Infer config

function
foo()

function
bar()

Calls

summary
of foo()

summary
of bar()

Used to
compute

Database

Modular: analyze one procedure at a time

Abstract interpretation: propagate state, obtain summary

Compositional: summary can be used in all calling contexts

On-demand: analyze dependencies as needed

6

Infer checkers

@PerfCrit
void somethingOnTheUI() {
 checkSomething();
}

void checkSomething() {
 readFromDatabase();
}

@Expensive
void readFromDatabase() {
 /* Slow stuff */
}

Annotation reachability - Analysis

7

{}

{(readFromDatabase, 7, readFromDatabase, @Expensive)}

{(checkSomething, 3, readFromDatabase, @Expensive)}
1
2
3
4
5
6
7
8
9

10
11
12
13

Report an issue: source function has sink in summary
(somethingOnTheUI, @PerfCrit, readFromDatabase, @Expensive)

Path: reconstruct from summary recursively
somethingOnTheUI() → checkSomething() → readFromDatabase()

Annotation reachability - Analysis

Abstract state in F: set of (G, N, H, A) tuples
Just one step towards sink

8

F() G() H()
@Acalls

at line N
eventually
reaches

Flow- and path-insensitive

Overapproximate
E.g. calls guarded by infeasible conditions

Underapproximate
E.g. dynamic dispatch, lambdas

Initial state: empty

Traverse instructions in-order

Transfer function: call to some G
If G is sink → add entry for G (via G)
If G can reach H → add entry for H (via G)
Check for sanitizer

Join: set join

Summary: state at exit

Annotation reachability - extensions

Regular expressions
External code
Compactness
Other languages

9

"annotation-reachability-custom-models": {
 "Expensive": ["com\.library\.SomeClass\..*"]
}

Path minimization

sink minimal

source minimal

a() b() c() d() e() f() g()

Reachability analysis for WhatsApp Android

10

Specification

11

Collaborate with WhatsApp app health team: 2 properties, 8 annotations, 11 regexps

#1

#2

Annotations Regexps Coverage

Prop. src snk san src snk san src snk san

#1 1 2 2 2 3 3 0.356% 2.689% 0.198%

#2 2 1 0 0 3 0 16.267% 0.002% 0.000%

Sources: performance critical (e.g. UI event handlers)
Sinks: computationally expensive (e.g. worker thread, file IO)
Sanitizers: not shipped in production (tests, debug utils)

Incompatible threading annotations (worker thread calling main)

Deployment

12

Developer Diff

CI

Reviewers

Code changes (diff)

Deployment

13

Developer Diff

CI

Main CI

Reviewers

Task

Continuous

Deployment

Pre-existing issues
Quality
Volume

14

No sink min. Sink min.
No source min. 12 500 1 600
Source min. 10 600 1 100

Code changes: shadow mode → early adopters → full rollout

Results

15

59 tasks filed, 7 fixed

Pre-existing

3 months

174 reported, 92 fixed

53% fixrate

Code changes

DeveloperMain CI Task Developer Diff CI

Example:
reduced ANRs by 0.56%
1.25% chat loading speedup globally

Unfixed

16

void source() { // Needs path-sensitivity
 if (is_debug()) sink();
}

void source() { // Needs flow-sensitivity
 beginSanitizing();
 sink();
 endSanitizing();
}

Kotlin conversion

Mutual recursion & scheduling

Flow- and path-insensitivity

f() g()src() snk()

Performance

Hard to measure: caching, multiple checkers, parallelism

17

Code changes (p90 execution time)Continuous (p90 execution time)

Takeaway
Fast enough to run multiple times a day in continuous mode
Provide timely feedback on code changes
Reachability is not the bottleneck

33 mins
Compilation

53 mins
Analysis (all checkers)

15 mins
Reachability only

32 mins
Total time: parent+current, all checkers,
changed files (and deps) only

Summary

Callgraph reachability for WhatsApp Android app health via Infer

3 months, prevented 92 regressions + 7 pre-existing fixes, end-user measurable impact

18

hajduakos.github.io

