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2 Billion
People around the world use WhatsApp daily 
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100 Billion
Messages daily

End-to-end Encrypted
So only sender and receiver of 
the message can see its content.

Reliable
So that messages go through 
no matter what.

Simple
So anyone can use it.
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Taint Analysis
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D = source()
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Challenges

Due to non-release builds
and artificial data
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Cannot record and
replay real traffic

Multiple platforms (client/server) 
and languages (Java, Kotlin, 
Obj-C, Swift, Erlang)

Privacy False positives Ecosystem
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Sink config

Logs

Sources Match sources against sinks

Interface for rules

Reusable rules (e.g. regexp)

Group evidences by code pointers



Taint analysis

Overview
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Reporting

Sink config

Client 
emulator

Sandbox 
server

Logs

Sources

Actions

Build

Developers
Tasks

Source control: localization + ownership
Evidence DB: deduplication
Production logs: volume estimation

Prepopulated state
UI

Raw 
flows

181: ...
182: log("Error " + err + " for data " + d);
183: ...

/path/to/SomeFile.java
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Results - Overview

Android
68 out of 178

tasks closed with a fix

iOS
21 out of 33
tasks closed with a fix

Reporting

Tasks triaged to developers

Monitor outcomes
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Android
68 out of 178

tasks closed with a fix
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Production matching heuristics
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Escalation and False Negatives

SEV: Escalation process

False negatives

Incremental development

Very specific (e.g. country-specific)

Gated features
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Android
4 out of 10

privacy SEVs detected

iOS
6 out of 10

privacy SEVs detected



Performance and Coverage
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18 mins
p90 execution time

1920
jobs/day

100
actions/job

34%
Activity coverage

21 mins
p90 execution time

1920
jobs/day

100
actions/job

46%
UIViewController coverage

Android iOS
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PrivacyCAT
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Conclusions
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