
Automated End-to-End Dynamic
Taint Analysis for WhatsApp

Sopot Cela, Andrea Ciancone, Per Gustafsson, Ákos Hajdu, Yue Jia,
Timotej Kapus, Maksym Koshtenko, Will Lewis, Ke Mao, Dragos Martac

Meta

FSE 2024

2 Billion
People around the world use WhatsApp daily

2

100 Billion
Messages daily

End-to-end Encrypted
So only sender and receiver of
the message can see its content.

Reliable
So that messages go through
no matter what.

Simple
So anyone can use it.

3

Taint Analysis

4

D = source()

sink(...)

Taint Analysis

5

D = source()

sink(...)

Taint Analysis

6

D = source()

sink(...)

D’ = sanitize(...)

Challenges

Due to non-release builds
and artificial data

7

Cannot record and
replay real traffic

Multiple platforms (client/server)
and languages (Java, Kotlin,
Obj-C, Swift, Erlang)

Privacy False positives Ecosystem

Overview

8

Client
emulator

Sandbox
server

Actions

Build

Prepopulated state
UI

Overview

9

Client
emulator

Sandbox
server

Actions

Build

Prepopulated state
UI

Prepopulate
client

Overview

10

Client
emulator

Sandbox
server

Actions

Build

Prepopulated state
UI

Fetch UI
hierarchy

PageButton

Container

Textbox

Page
└ Button(id=1, label=”Chats”)
└ Container
 └ Container
 └ Label(text=”Peter”)
 ...
└ Textbox

Generate
actions

Swipe
down

Swipe
rightTap on

button1

Tap on
button2

Enter
text

Rank &
pick

Tap on
button2

Act

Client
emulator

Sandbox
server

Actions

Build

Prepopulated state
UI

Taint analysis

Overview

11

Sink config

Logs

Sources Match sources against sinks

Interface for rules

Reusable rules (e.g. regexp)

Group evidences by code pointers

Taint analysis

Overview

12

Reporting

Sink config

Client
emulator

Sandbox
server

Logs

Sources

Actions

Build

Developers
Tasks

Source control: localization + ownership
Evidence DB: deduplication
Production logs: volume estimation

Prepopulated state
UI

Raw
flows

181: ...
182: log("Error " + err + " for data " + d);
183: ...

/path/to/SomeFile.java

Results
13

Results - Overview

Android
68 out of 178

tasks closed with a fix

iOS
21 out of 33
tasks closed with a fix

Reporting

Tasks triaged to developers

Monitor outcomes

14

Results - Overview

Android
68 out of 178

tasks closed with a fix

iOS
21 out of 33
tasks closed with a fix

Reporting

Tasks triaged to developers

Monitor outcomes

Prepopulate
Client

False positives

Tainted flows in initialization

15

Results - Overview

16

Android
68 out of 178

tasks closed with a fix

iOS
21 out of 33
tasks closed with a fix

Reporting

Tasks triaged to developers

Monitor outcomes

Prepopulate
Client

if isDebug():
 Log.production(...) Log.debug()

Instead of

False positives

Tainted flows in initialization

Inconsistent use of APIs

Results - Overview

17

Android
68 out of 178

tasks closed with a fix

iOS
21 out of 33
tasks closed with a fix

Reporting

Tasks triaged to developers

Monitor outcomes

Prepopulate
Client

if isDebug():
 Log.production(...) Log.debug()

Instead of

False positives

Tainted flows in initialization

Inconsistent use of APIs

Production matching heuristics

Prod
match

Prod logs

Query

Volume

Escalation and False Negatives

SEV: Escalation process

False negatives

Incremental development

Very specific (e.g. country-specific)

Gated features

18

Android
4 out of 10

privacy SEVs detected

iOS
6 out of 10

privacy SEVs detected

Performance and Coverage

19

18 mins
p90 execution time

1920
jobs/day

100
actions/job

34%
Activity coverage

21 mins
p90 execution time

1920
jobs/day

100
actions/job

46%
UIViewController coverage

Android iOS

Example

20

[DATA].jpg

Source (client)

Example

21

[DATA].jpg

Process 1

Process 2

Delete

Delete

Source (client)

Example

22

[DATA].jpg

Process 1

Process 2

Logs

Delete

Delete

Log(fileName+“ does not exist”)

Source (client)

Example

23

[DATA].jpg

Process 1

Process 2

LogsTainted [DATA]

Delete

Delete

Log(fileName+“ does not exist”)

Sink (DB)

Source (client)

Crash

PrivacyCAT

24

Conclusions

25

Taint
analysis Reporting

Sink config

Client
emulator

Sandbox
server

Logs

Sources

Actions

Raw
flows

Build

Developers
Tasks

Source control
Evidence DB
Production logs

68 out of 178
tasks closed with a fix

21 out of 33
tasks closed with a fix

4 out of 10
privacy SEVs detected

6 out of 10
privacy SEVs detected

18 mins
p90 execution time

34%
Activity coverage

21 mins
p90 execution time

46%
UIViewController coverage

Android iOS

26

