
Formal Specification and Verification 
of Solidity Contracts with Events

Ákos Hajdu1, Dejan Jovanović2, Gabriela Ciocarlie2

1Budapest University of Technology and Economics
2SRI International

Presented at FMBC 2020



contract Token {

}

mapping(address=>uint) balances;
uint total;

2

Solidity Smart Contracts and Events

event initialized(address from, uint amount);
event transferred(address from, address to, uint amount);

constructor(uint _total) public {
balances[msg.sender] = total = _total;

}
emit initialized(msg.sender, total);

function transfer(address to, uint amount) public {
require(balances[msg.sender] >= amount && msg.sender != to);
balances[msg.sender] -= amount;
balances[to] += amount;

}
emit transferred(msg.sender, to, amount);



3

• Stored in blockchain logs

• Contract communicates with user
– Important state changes

• Abstract view of execution
– Relevant aspect to each user

Solidity Events

E1(x)
E2(x,y)

E1(x)
E1(x)

E2(x,y)E2(x,y)



4

Motivation

Can we trust (rely on)
the emitted events? 

Do we always emit if balances change?

Was there a change when emitted?

Is the amount correct? Not really…



5

• What state variable(s) do events track?
– Emit event iff there was a change

Formal Specification of Events

contract Token {
mapping(address=>uint) balances;
uint total;

event initialized(address from, uint amount);

event transferred(address from, address to, uint amount);
}

/// @notice tracks-changes-in balances
/// @notice tracks-changes-in total

/// @notice tracks-changes-in balances



6

• What events can functions emit?
– Similar to Java throws

Formal Specification of Events

contract Token {

constructor(uint _total) public {
...

}

function transfer(address to, uint amount) public {
...

}
}

/// @notice emits initialized

/// @notice emits transferred



7

• What are the conditions before and at the emit?

Formal Specification of Events

contract Token {

event initialized(address from, uint amount);

event transferred(address from, address to, uint amount);
}

/// @notice precondition balances[from] == 0
/// @notice postcondition balances[from] == amount
/// @notice postcondition total == amount

/// @notice precondition balances[from] >= amount
/// @notice postcondition balances[from] == before(balances[from]) - amount
/// @notice postcondition balances[to] == before(balances[to]) + amount



DEMO

8



9

• Where to check if an event has been emitted?
– Cannot check immediately (modification in multiple steps)

• Where to check preconditions?
– What does “before the change” exactly mean?

Formal Verification



10

Checkpoints

function transfer(address to, uint amount) public {
require(balances[msg.sender] >= amount && msg.sender != to);
...
balances[msg.sender] -= amount;
balances[to] += amount;
...
emit transferred(msg.sender, to, amount);
...

}

Before checkpoint
• First time variable changes
• Save state (for precondition)

After checkpoint
• Static barrier
• Latest point to emit
• E.g., function end

Emit
• Check pre/post
• Clear before/after checkpoint



11

Overview

solc-verify

.bpl

∆vΣ→φ

μ□β→λ

.sol
Extended 
compiler Boogie 

verifier

SMT
solvers

Solidity contract
with specification

Boogie program w/
instrumentation

Back-annotation Verification
conditions

Proofs

github.com/SRI-CSL/solidity

https://github.com/SRI-CSL/solidity


12

Instrumentation
mapping(address=>uint) balances;

/// @notice emits transferred
function transfer(address to, uint amount) public {

require(balances[msg.sender] >= amount
&& msg.sender != to);

balances[msg.sender] -= amount;

balances[to] += amount;

emit transferred(msg.sender, to, amount);

}

mapping(address=>uint) bal_old;
bool bal_modif;

require(!bal_modif);

if (!bal_modif) {
bal_old = balances;
bal_modif = true; }

assert(!bal_modif);

assert(bal_modif);
assert(bal_old[msg.sender] >= amount);
assert(balances[msg.sender] == bal_old[msg.sender]-amount);
assert(balances[to] == bal_old[to] + amount);
bal_modif = false;

if (!bal_modif) {
bal_old = balances;
bal_modif = true; }

new vars

assume clear

check modif

check modif

emit specs

after checkpt



13

• We used solc-verify
– Modular verifier based on Boogie and SMT

– Can work with other verifiers (supporting assertions)

• After checkpoints
– Depend on verification approach

– Modular verification: loop boundaries as well

Discussion



14

• Solidity events provide abstract view

• Formal specification and verification

• In-code annotations

• Checkpoints

• Instrumentation

Conclusions

E1(x)

E2(x,y)

E1(x)
E1(x)

E2(x,y)E2(x,y)

contract Token {
mapping(address=>uint) balances;
uint total;

/// @notice tracks-changes-in balances
/// @notice tracks-changes-in total
event initialized(address from, uint amount);

/// @notice tracks-changes-in balances
event transferred(address from, address to, uint amount);

}

arxiv.org/abs/2005.10382

github.com/SRI-CSL/solidity


