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Abstract

Since their invention, Petri nets have provided modelling and analysis methods to support the design of
correct, reliable and robust systems. This motivated our work to develop PetriDotNet, a Petri net editor
and analysis tool. In this paper we overview the supported modelling formalisms and the analysis methods
included in PetriDotNet. Next, we present eight different industrial case studies, demonstrating the wide
variety of scenarios where Petri nets and PetriDotNet can help the design, development and analysis of
industrial systems. Our original goal with PetriDotNet was to provide an educational tool to our students,
however our efforts led to a framework being able to serve both academic and industrial needs.
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1. Introduction

In the past decades, modelling and model-based analysis have taken a prominent role in the design of
computer-based systems. The qualitative and quantitative design-time analysis of models provided early
feedback for the developers, allowing them to check the functional correctness of the design, estimate extra-
functional characteristics like performance or dependability, and evaluate design alternatives.

In this context, one of the most popular modelling formalisms was Petri nets, since its variants provided
simple but powerful representations of the various aspects of the systems under design. The success of
Petri nets was due to their straightforward syntax (with intuitive graphical representation) and semantics
addressing especially concurrency and causality of events, extended later with the possibility to model
(among others) data processing, timing and probabilistic behaviour. The analysis possibilities of basic
Petri net models focused on checking the state space of the modelled system, including state reachability,
invariants, general safety and liveness properties, as well as temporal logic model checking. Stochastic
extensions allowed the evaluation of state probabilities and reward measures representing service quality
(e.g. performance and dependability).

As it turned out, Petri nets with an appropriate editor and powerful analysis methods provide tools
for the engineers to model, study and analyse various problems in system and software development. The
modelling and analysis of event-driven concurrent systems is well-supported by P/T nets and related analysis
techniques: state reachability and temporal logic model checking provide useful means to verify the logical
correctness of communicating systems such as control logics or communication protocols. Data processing
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can be efficiently modelled by coloured Petri nets, this way supporting the design of distributed algorithms
and workflows. Invariant analysis, deadlock checking and model checking methods can be used to ensure
the correctness of data-dependent behaviour. Stochastic modelling and analysis of state probabilities yield
modelling and analysis of service quality properties of critical systems such as reliability, performance or
availability.

In this paper we discuss PetriDotNet, a Petri net editor and analysis tool for P/T, coloured and stochastic
Petri nets. Besides simulation and simple structural and dynamic analysis methods, the work of the last
ten years resulted in many powerful analysis features. In our previous paper [1], we have focused on the
educational use of PetriDotNet. Here we demonstrate that Petri nets and PetriDotNet can aid the design
and development of industrial systems with its modelling and analysis features.

For this purpose, we define the Petri net variants supported by our tool and we give a short introduction
to the main discrete and stochastic analysis features. Then, we showcase a wide variety of industrial
use cases from different domains, including the verification of the safety logic of a nuclear power plant,
analysis of power consumption of sensor nets, test input generation for communicating robots, analysis of
public transport networks, studying railway interlocking systems, hazard rate calculation of a fault-tolerant
automotive control system, analysis of an IaaS cloud, and an extensive benchmark on various models. In
some applications the modelling features were exploited and in other cases the analysis features were more
dominant; some cases demonstrate the usability of P/T nets, some others underline the advantages of
coloured or stochastic net representations; some cases were done by the PetriDotNet development team and
other applications by independent industrial practitioners.

This paper shows evidence of PetriDotNet being a convenient tool to design Petri net based analysis
models and to evaluate them by performing simulation, discrete and stochastic analysis. A wide range of
analysis capabilities is supported by PetriDotNet and case studies showed that we could model and verify
systems which were not possible to be analysed before. The case studies also emphasise that the tool is
competitive with other frameworks in this field.

Structure of the paper. The structure of this paper is the following. Section 2 introduces the modelling
and requirement formalisation languages used in the article: different variants of Petri nets and temporal
logics. Section 3 focuses on the current functionality of PetriDotNet and describes the discrete and stochastic
analysis algorithms included in our tool. Next, we present industrial use cases in Section 4. The related
work on industrial usage of Petri nets is presented in Section 5. Finally, Section 6 summarises and concludes
the paper.

This article is an extended version of our previous conference paper [1]. The major novel contributions
are the extensive description and discussion of analysis algorithms included in PetriDotNet (in Section 3), the
detailed description of industrial cases where PetriDotNet was proven to be applicable and useful (Section 4)
and the related work on the industrial usage of Petri nets (Section 5).

2. Background

This section introduces the modelling and requirement formalisation languages that are supported by
PetriDotNet and are used in the rest of this paper. Section 2.1 describes three variants of Petri nets: P/T
nets, coloured Petri nets and stochastic Petri nets. Section 2.2 presents languages for describing temporal
requirements, and Section 2.3 is dedicated to quantitative requirements. Although the rest of the paper is
more informal and the definitions are less frequently used, we still include them in this section to precisely
describe the semantics of the supported modelling and requirement formalisms.

2.1. Variants of Petri nets
This section presents the variants of Petri nets that are supported by PetriDotNet, namely Petri nets

(Section 2.1.1), coloured Petri nets (Section 2.1.2) and stochastic Petri nets (Section 2.1.3).
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2.1.1. Petri Nets
Petri nets are graphical models for describing concurrent, non-deterministic and asynchronous systems,

providing both structural and dynamic analysis [2]. Formally, a Petri net (also referred to as Place/Transition
net or P/T net2) is a tuple PN = (P, T,E,W,m0), where

• P is the finite set of places,

• T is the finite set of transitions with P ∩ T = ∅,

• E ⊆ (P × T ) ∪ (T × P ) is the finite set of arcs,

• W : E ↦→ Z+ is the weight function assigning weights w−(p, t) to edges (p, t) ∈ E and w+(p, t) to edges
(t, p) ∈ E, and

• m0 is the initial marking.

A marking of a Petri net is a mapping m : P ↦→ N. A place p contains k tokens in a marking m if
m(p) = k. A transition t ∈ T is enabled in a marking m, if m(p) ≥ w−(p, t) holds for each p ∈ P with
(p, t) ∈ E. An enabled transition t can fire, consuming w−(p, t) tokens from places p ∈ P with (p, t) ∈ E
and producing w+(p, t) tokens in places p ∈ P with (t, p) ∈ E. The firing of a transition t in a marking m
is denoted by m[t⟩m′ where m′ is the marking after firing t.

A sequence of transitions σ = t1t2 . . . tn ∈ T ∗ is a firing sequence. A firing sequence is realisable in
a marking m, leading to m′ (denoted by m[σ⟩m′), if m[t1⟩ . . . [tn⟩m′ holds. The Parikh image of a firing
sequence σ is a vector ℘(σ) : T ↦→ N, where ℘(σ)(ti) counts the number of the occurrences of ti in σ.

The (infinite) set of all markings m : P ↦→ N is denoted by S. If there exists a realisable firing sequence
σ such that m0[σ⟩m, then m ∈ S is reachable. The set of all reachable markings is denoted by SR ⊆ S.

The incidence matrix of a Petri net is a matrix C with size |P |× |T |, where C(p, t) = w+(p, t)−w−(p, t),
i.e. the change in the number of tokens in p when firing t. Given a vector x ∈ N|T |, Cx denotes the change
in the marking if each transition t ∈ T is fired x(t) times. Given two markings m and m′ the state equation
takes the form m+ Cx = m′ and it describes the possible trajectories from m to m′. Due to the definition
of the incidence matrix, the Parikh image ℘(σ) of a realisable firing sequence with m[σ⟩m′ fulfils the state
equation. On the other hand, not all solutions of the state equation correspond to a realisable firing sequence.
A solution x is realisable if a realisable firing sequence σ exists with ℘(σ) = x.

A vector y ∈ N|T | is a T-invariant if Cy = 0 holds, i.e. firing the T-invariant does not change the marking.
A vector y ∈ N|P | is a P-invariant if yC = 0 holds, i.e. the weighted sum of tokens in the P-invariant is
constant.

Petri nets with inhibitor arcs. Petri nets can be extended with a set I ⊆ (P × T ) of inhibitor arcs to
become a tuple PN I = (PN , I). The weight function is also extended to assign weights to inhibitor arcs:
W : (E ∪ I) ↦→ Z+. When inhibitor arcs are present, there is an extra condition for a transition t ∈ T to be
enabled: for each p ∈ P , if (p, t) ∈ I then m(p) < w−(p, t) must hold. Inhibitor arcs increase the modelling
power of Petri nets to be Turing complete [3].

2.1.2. Coloured Petri Nets
Coloured Petri nets (CPN) provide a high-level language to develop formal models, yielding compact

representations for complex systems. The coloured Petri net formalism enriches P/T nets with complex
data structures [4]. There are many types of coloured Petri nets. In this paper a variant of well-formed
coloured Petri nets is used that is supported by the PetriDotNet tool. Well-formed coloured Petri nets have
the same expressive power as Place/Transition nets.

2The name “Place/Transition net” is used in the following to emphasise that the Petri net is neither coloured, nor stochastic.
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Coloured Petri nets usually have an associated action language (such as the CPN ML [4]) for defining
colour sets (types), declaring variables and constants, and describing initial markings, guards and arc ex-
pressions. PetriDotNet supports a subset of the CPN ML language 3, variables of finite ordered types are
supported. Variables can be compared, traditional arithmetic operations (on integers) and also the succes-
sor operator can be used. Let EXPR denote the set of syntactically correct expressions provided by the
language. Given an expression e ∈ EXPR, let Type[e] denote its type (i.e. colour set) and Var [e] its free
variables.
Formally, a coloured Petri net [4] is a tuple CPN = (P, T,A,Σ, V, C,G,E, I,M0), where

• P is the finite set of places,

• T is the finite set of transitions, with P ∩ T = ∅,

• A ⊆ (P × T ) ∪ (T × P ) is the finite set of arcs,

• Σ is the finite set of non-empty colour sets, i.e. types,

• V is the finite set of typed variables such that ∀v ∈ V : Type[v] ∈ Σ,

• C : P ↦→ Σ is the colour set function assigning a colour set to each place,

• G : T ↦→ EXPR is the guard function assigning a guard expression to each transition t ∈ T , with
Type[G(t)] = Bool,

• E : A ↦→ EXPR is the arc expression function assigning an expression to each arc a, with Type[E(a)] =
C(p) if a is connected to place p,

• M0 is the initial marking.

A marking M is a function mapping each place p into a multiset of values M(p) over the colour set C(p),
i.e. M(p) : C(p) ↦→ N, defining the number of tokens of each permitted colour for each place.

Firing rules of transitions in P/T nets only depend on the marking. However, in coloured Petri nets
the arc and guard expressions have to be considered as well. Let Var [t] denote the variables of a transition
t ∈ T : Var [t] , Var [G(t)] ∪

⋃
p∈P {Var [E(a)] | a = (p, t) ∈ A ∨ a = (t, p) ∈ A}, i.e. the variables appearing

in the guard of t and in expressions on arcs connected to t. A binding b of a transition t assigns each
variable v ∈ Var [t] a value b(v) ∈ Type[v]. The set of all bindings for a transition t is denoted by B(t). A
binding element is a pair (t, b) of a transition t and a binding b ∈ B(t). The set of all binding elements for
a transition t is BE(t) = {(t, b) | b ∈ B(t)}. Given a binding element (t, b), let G(t)⟨b⟩ denote the result of
evaluating a guard in the binding b. Similarly, let E(p, t)⟨b⟩ or E(t, p)⟨b⟩ denote the result of evaluating arc
expressions. If no such arcs exist, E(p, t)⟨b⟩ = ∅ or E(t, p)⟨b⟩ = ∅, respectively.

A binding element (t, b) is enabled in a marking M if (1) G(t)⟨b⟩ evaluates to true and (2) E(p, t)⟨b⟩ ≤
M(p) for each p ∈ P . An enabled binding element (t, b) may fire, leading to the marking M ′ defined by
M ′(p) = M(p) − E(p, t)⟨b⟩ + E(t, p)⟨b⟩ for each p ∈ P , i.e. input arcs remove tokens, while output arcs
produce tokens as specified by the arc expressions. Firing sequences and reachability are defined the same
way as for P/T nets.

2.1.3. Stochastic Petri Nets
Ensuring the correctness of critical systems, including safety-critical, distributed and cloud applications,

requires the analysis of not only functional, but also extra-functional requirements. A large class of quantita-
tive extra-functional properties, such as the dependability and performance of the system, can be addressed
by stochastic modelling. In PetriDotNet, the stochastic Petri net (SPN) formalism is supported for the
design and analysis of stochastic models.

3The language supported by PetriDotNet is described in its user manual, which is available at
http://petridotnet.inf.mit.bme.hu/releases/pdn1_manual.pdf.
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Stochastic Petri nets extend P/T nets by assigning exponentially distributed random delays to transi-
tions [5]. After the delay associated with an enabled transition is elapsed the transition fires and transition
delays are reset. A stochastic Petri net (SPN) is a pair SPN = (PN,Λ), where:

• PN = (P, T,E,W,m0) is a Petri net. We will only consider the case when the Petri net is bounded,
hence its reachable state space SR is finite.

• Λ: T ↦→ IR+ is a function that maps the set of transitions to transition rates.

The semantics of SPNs are defined as continuous-time Markov chains (CTMC). A (homogeneous) CTMC
over the finite domain {0, 1, . . . , n − 1} is a continuous-time stochastic process X(t) ∈ {0, 1, . . . , n − 1},
t ∈ IR≥0 such that:

• The initial probability distribution vector of the system is π0 ∈ [0, 1]n, such that
∑n−1
x=0 π0[x] = 1. By

convention, boldface vector symbols refer to row vectors unless explicitly noted.

• The infinitesimal generator matrix Q ∈ IRn×n describes the state transitions of the system.

– Off-diagonal elements q[x, y] > 0, x ̸= y are the rate parameters of exponentially distributed
delays after which the system in state x moves to state y. Zero off-diagonal elements indicate the
absence of transitions.

– The diagonal elements q[x, x] = −
∑n−1
y=0,y ̸=x q[x, y] < 0 are the negatives of the rate parameter

of the exponential distribution corresponding to the sojourn time in the state x.
– Thus Q1T = 0T holds.

• The time evolution of the probability distribution vector π(t) ∈ IRn, i.e. the state probabilities
π(t)[x] = Pr(X(t) = x), is described by the initial value problem

π(0) = π0,
dπ

dt
= πQ. (1)

PetriDotNet implements a variety of analysis algorithms for CTMCs, which are described in Section 3.7.
The stochastic behaviour of the SPN is represented by the CTMC X(t) ∈ {0, 1, . . . , n−1}, where n = |SR|

is the number of reachable markings of the underlying Petri net.

• Transformation between the SPN and the continuous-time Markov chain is established by the bijection
ι : SR ↦→ {0, 1, . . . , n− 1}, which maps the reachable markings to integers such that whenever the SPN
is in the marking m at time t, X(t) = ι(m) holds. For simplicity we require that ι(m0) = 0.

• The initial probability distribution is π0[x] = 1 if x = 0 = ι(m0) and 0 otherwise.

• Off-diagonal elements q[x, y] of the infinitesimal generator matrix Q contain the rate of exponentially
distributed transitions from the marking ι−1(x) to ι−1(y). That is, Q is defined as

q[x, y] =
{∑e∈T

ι−1(x)[e⟩ι−1(y) Λ(e), if x ̸= y,
−

∑n−1
z=0,z ̸=x q[x, z], if x = y.

In the variant of stochastic Petri nets described above, the exponential transition rates Λ: T ↦→ IR+ are
not allowed to depend on the marking of the net. This assumption is made in PetriDotNet to enable the
block Kronecker decomposition of CTMCs with large state spaces, which is discussed in Section 3.7.

A further limitation of our tool pertains the analysable firing behaviors of transitions. Generalised
Stochastic Petri Nets (GSPNs) extend SPNs by allowing transitions with immediate firing behavior [6],
which neccessitates using semi-Markov processes as the semantics of the net. PetriDotNet only implements
analysis for CTMCs, thus all transitions must have exponentially timed behavior, i.e. the model has to be
an SPN. Hence we only presented the formal definition of SPNs.
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2.2. Temporal Logic Model Checking
The purpose of model checking is to determine if the model of a system (a Petri net variant in our

case) meets a given specification [7]. Behavioral properties are often expressed in temporal logic formalisms,
which are capable of reasoning about the order of events in a system using a logical time. There are two
main categories based on the structure of logical time. Linear Temporal Logic (LTL) can describe a linear
sequence of events, while branching time logics such as Computational Tree Logic (CTL) can describe all
possible sequences [8]. They have different semantics and expressive power, for example deadlock freedom
can be expressed only with CTL, while fairness properties are only expressible with LTL. It is desirable for
a model checker to support both formalisms, however only a few of them do so. This allows the user to
express and analyse a wide variety of different requirements, ranging from safety through fairness to liveness
requirements. The details of the different temporal logic model checking algorithms are discussed together
with our contributions, in Sections 3.4 and 3.5.

2.3. Stochastic Analysis
Design time analysis of the quantitative aspects of critical systems is an important task in the verification

of reliability and performance requirements. The analysis of stochastic properties is challenging as recent
real-life systems yield huge state spaces and complex stochastic behaviour. Thus, no single approach or
algorithm can handle the various challenges of industrial systems.

Stochastic analysis of complex systems requires the formulation of the engineering model to be studied
as a stochastic model and its engineering properties of interest as stochastic reward measures or properties.

In PetriDotNet, stochastic models are continuous-time Markov chains that arise from stochastic Petri
nets, which were reviewed in Section 2.1.3. Therefore, in the remainder of this section we will focus our
attention to such models.

2.3.1. Rewards
Rewards allow modelers to capture quantitative aspects, such as dependability or performability, of a

stochastic model as random variables. Formally, rewards can be described by stochastic reward nets. We
also give some examples of the construction of rewards for algebraic expressions and CTL state predicates.

Reward rates. The stochastic reward net (SPN, r) extends the stochastic Petri net SPN = (PN,Λ) with a
reward process R(t) ∈ IR, which is defined by the reward rate function r,

r : S ↦→ IR, R(t) = r(ι−1(X(t))).

In other words, the reward rate random variable R(t) is the function of the marking m(t) = ι−1(X(t)) of
the SPN at time t. By taking the expected value IER(t), dependability measures, such as reliability and
availability can be expressed, as well as performance measures, such as the mean service rate.

In PetriDotNet, the function r : S ↦→ IR can be specified by state rewards. State rewards can be defined
to associate a random variable with the number of tokens on a single place p, where rp(M) = M(p). We
call these rewards place rewards.

A more sophisticated approach takes a CTL predicate ψ and an algebraic expression f of the token
counts of places, yielding rψ,f (M) = f(M) if ψ(M), 0 otherwise, which we call CTL rewards.

Accumulated rewards. The accumulated reward process Y (t) is obtained by the time integration of the
reward rate R(t), i.e.

Y (t) =
∫ t

0
R(τ) dτ .

The use cases of the expected accumulated reward IEY (t) include mean uptime until time t, mean number
of serviced requests and mean accumulated cost.
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Transition rewards. As an alternative to integrating reward rates, the accumulated reward Y (t) can be
defined by an impulse reward function ρ : S × T ↦→ IR. In this formulation, Y (0) = 0 and Y is increased by
ρ(M, t) whenever the transition t is fired in marking M . This can be used to determine the number of times
a certain action happens in a given time interval, for example, the number of requests successfully processed
by a system.

We call the special case where ρt(M, t) = const. for some transition t ∈ T , while 0 for all other transitions
a transition reward.

It is also sometimes useful to define impulse rewards by CTL expression over the source and target states.
Consider the CTL predicates ψ,ψ′ and the algebraic expression f of the token counts of places. The CTL
event reward ρψ,ψ′,f (M, t) is equal to f(M) if ψ(M) and ψ′(M ′) hold, where M ′ is the marking obtained
after firing t, and is equal to 0 otherwise. Such rewards allow calculating how often a state transition occurs
from a marking where ψ holds to a marking where ψ′ holds.

2.3.2. Analysis Types
Now we review some analysis tasks associated with stochastic reward nets. Solution algorithms for these

analyses implemented in PetriDotNet are discussed in Section 3.7.

Transient analysis. The transient analysis of stochastic models captures the transient behaviors of systems
upon starting from an initial state. The expectations IER(t) = π(t)rT and IEY (t) = L(t)rT are calculated
for some finite time horizon t after the start. The vector r enumerates the reward rates r(M) in the order
defined by the association between markings and CTMC states, while L(t) =

∫ t
0 π(τ) dτ is the time integral

of the probability distribution vector π(t) [9].

Steady-state analysis. In steady-state analysis, the long term-behavior of the rewards is studied, which
requires calculating the steady-state expected reward IER = limt↦→∞ IER(t).

If the steady state probability distribution vector

π ∈ [0, 1]n, πQ = 0, π1T = 1 (2)

exists independently from the initial distribution π0, the mean steady-state reward can be obtained as
IER = πrT [5].

Mean-time-to-state-partition. Another measure of interest is the time TFF to reach a state partition D (
SR, which can be used to study the reliability of systems. The mean time to reach a state partition
MTFF = IE[TFF] can be calculated by noting that TFF has phase-type distribution [10]. In PetriDotNet,
state partitions are specified by CTL predicates, similarly to CTL state and event rewards.

Sensitivity analysis. In parametric stochastic Petri nets and continuous-time Markov chains, transition
rates may often depend on some vector of model parameters θ ∈ IRK . By determining the sensitivity of the
expected rewards IER to the parameters, i.e. its parital derivatives ∂(IER)/∂(θ[k]), the parameters with the
most influence over the behavior of the model can be determined [11].

3. Features of PetriDotNet

This section overviews the editor and analysis features of the PetriDotNet tool. First, in Section 3.1 we
focus on the editor and general features provided by the framework from the users’ point of view. Section 3.2
is about the framework features for developers. After, the discrete analysis features are discussed: general
Petri net analysis algorithms (Section 3.3), saturation-based CTL model checking (Section 3.4), LTL model
checking (Section 3.5) and CEGAR-based reachability analysis (Section 3.6). Section 3.7 is dedicated to the
stochastic analysis functionality of PetriDotNet.
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Figure 1: The editor and some analysis windows of PetriDotNet

3.1. Editor Features
First and foremost, PetriDotNet is an editor for Petri nets. It provides graphical editing capabilities

(cf. Figure 1) for both P/T nets and well-formed coloured Petri nets (see Section 2.1.2 for the definition of
the supported coloured Petri net variant). The tool also supports Petri nets extended with inhibitor arcs,
transition priorities, and places with limited token capacity. Moreover, the construction of hierarchical Petri
nets is supported by allowing coarse transitions that can be refined by a subnet.

The tool provides simulation functionality (token game) for Petri nets, where the simulation can be
manually conducted or automatically executed. The tool is shipped with a plug-in that can perform large
scale simulation, executing thousands or millions of non-deterministic firings, and then present the statis-
tics. These are essential features for the users during the model building phase, as they allow a deeper
understanding of the models under development.

To save and load the Petri nets, PetriDotNet supports two formalisms natively. The default format is
PNML (Petri Net Markup Language) [12], a standard, XML-based Petri net description format. PNML
is supported by various other tools, therefore this is an interface between these tools and PetriDotNet. A
binary, custom file format is also supported that provides more efficient persistence for large models.

Export and import features. It is possible to export the constructed Petri nets into other Petri net formalisms,
such as to the syntax of the GPenSIM4 (General Purpose Petri Net Simulator) and the .pnt format of the
INA5 (Integrated Net Analyzer) tool. Also, the Petri net models can be translated into the input format of
SAL6 (Symbolic Analysis Laboratory). Furthermore, import is also provided from the .net textual Petri net
file format used by the INA/Tina7 tools, among others. New import or export plug-ins can be developed
easily as the internal model representations are simply accessible.

3.2. Framework Features for Developers
Plug-in features. The functionality of the tool is extensible with plug-ins. Plug-ins can perform simulation
tasks, provide analysis features (e.g. model checking) or export/import capabilities. Each plug-in can access

4http://www.davidrajuh.net/gpensim/
5http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
6http://sal.csl.sri.com/
7http://projects.laas.fr/tina/
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the Petri net data models, use the graphical user interface, add new menu items, and call built-in PetriDotNet
commands. The architecture of the tool is designed to keep the development of plug-ins simple, in order to
help the users to focus on functionality instead of technology. For more details the reader is referred to our
previous paper [1].

3.3. General Petri Net Analysis
The PetriDotNet framework includes essential algorithms for the analysis of general properties of P/T

nets, such as the following.

• Dynamic Petri net properties [2] can be calculated based on the state space including boundedness,
deadlock-freedom, reversibility, persistence and reachability of states. These properties can help to
answer basic queries about the behaviour of the modelled system, including its safety and liveness.

• Reachability/coverability graphs [2] can be generated and exported into image files using a graphical
representation. Reachability graphs contain the reachable markings m ∈ SR of the Petri net as nodes
and transitions t ∈ T between them as arcs. Coverability graphs are finite over-approximations of
reachability graphs involving a special symbol ω to represent infinite number of tokens. These graphs
can be used to illustrate and explore all possible behaviours of the modelled system.

• Invariants can be calculated and displayed directly on the Petri net. The invariant analysis covers both
P and T-invariants based on the well-known Martinez–Silva algorithm [13], and a different algorithm
by Cayir and Ucer [14] that computes the bases of invariants. T-invariants correspond to possible
cyclic behaviours, whereas P-invariants imply that the weighted sum of tokens is constant (e.g. certain
resources are constant in the modelled system).

These algorithms improve the usability of PetriDotNet both in education and for industrial use cases. Note
however, that the set of reachable markings (i.e. the state space) can be exponentially or even infinitely large
compared to the structural size of the Petri net. Therefore calculating dynamic properties and reachability
graphs may not be suitable for industrial applications, but are very useful for educational purposes. More
advanced algorithms (presented in the forthcoming sections) are available for efficient analysis of industrial
problems.

3.4. Saturation-Based CTL Model Checking Algorithms
The CTL model checking algorithms evaluate a CTL expression on a given Petri net with a given initial

marking. The main CTL quantifiers such as all and exists and operators such as globally, future, next and
until are supported. Predicates of the CTL expression refer to markings of the Petri net. In addition,
the model decomposition can also be provided or an invariant-based heuristic can be used. Based on this
information the model checking algorithm evaluates if the model satisfies the requirements. In the following
the underlying algorithms are discussed in more detail.

The traditional algorithm for CTL model checking is based on fixed point computations [15]: the eval-
uation of each CTL operator is reduced to fixed points reached through the state transitions. Each fixed
point computation labels a set of states with a subformula of the CTL expression. Labelling is started from
the deepest inner subformula and is continued from subformula to subformula. When the full formula is
processed the result is the set of states satisfying the CTL expression. Model checking is then reduced to
verifying if the initial states are contained in the result set of the fixed point computations.

Symbolic model checking. Symbolic model checking is a common remedy for the state space explosion prob-
lem, it helps to use the computation resources more efficiently than explicit model checking. In symbolic
model checking, characteristic functions are used to encode sets of states and decision diagrams can be
used for efficient storage. A decision diagram is a directed acyclic graph, representing a function. Various
reduction rules ensure that decision diagrams are canonical and compact representation of a given function
or set, which makes it a proper means to store sets of states. Traditional symbolic algorithms encode the
reachable states and also the next state functions in decision diagrams. State variables are mapped to the
variables of the decision diagram and state vectors are stored in the decision diagram as paths.
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Saturation. Saturation is a symbolic algorithm for state space exploration and model checking. It relies on a
decomposed model, where each Petri net place belongs to exactly one component. Each possible marking of
a component is a local state. The global state (encoding a global marking of the net) is a composition of these
local states: s = (s1, s2, . . . , sK). With this decomposition the state space and the next-state function can
be stored using multi-valued decision diagrams (MDDs) that are directed acyclic graphs encoding functions
D1 × · · · ×DK ↦→ {0, 1}, thus can store sets of K-tuples.

The saturation algorithm exploits the locality of the decomposed model, making it especially suitable
for models of asynchronous systems. The algorithm uses the following special iteration strategy: it starts
with encoding the initial marking of the Petri net in the MDD. Then the nodes of the state space MDD
are saturated (i.e. a local fixed point is computed w.r.t. the next-state function) in a bottom-up order, by
applying saturation recursively whenever a new state is discovered. This helps to avoid the large peak size
of the state space MDD [16].

The original saturation algorithm for state space exploration presented in [17] has been extended over
the following years. These extensions include e.g. the on-the-fly exploration of local state spaces [18], the
CTL model checking based on saturation [19], or the constrained saturation to make CTL model checking
more efficient [20].

Our contributions. In PetriDotNet, various algorithms provide model checking based on saturation [21–23].
The CTL model checking approaches are based on the work of Zhao and Ciardo [20] and the bounded
model checking approach is the extension of the method of Yu et al. [24]. Our research resulted in significant
extensions and improvements in order to provide more efficient CTL model checking algorithms. This way
PetriDotNet currently supports novel analysis algorithms as follows.

• CTL model checking of P/T nets and coloured Petri nets based on traditional and extended versions
of saturation [16, 25]. For this, various improvements were developed on top of the original saturation
algorithms to improve their performance. Furthermore, the saturation algorithm was extended to
support CPNs, which turned out to be quite useful in practice (Section 4.1). This work led to the
so-called lazy saturation, that improves the performance of the state space exploration of CPNs by
reducing the size of the decision diagram representations.

• Bounded CTL model checking based on a novel saturation-based algorithm, with various search strate-
gies [26, 27]. This required the integration of the bounded state space exploration [24] with the CTL
model checking algorithms. Further improvements were done in order to reduce the performance
overhead of the bounded saturation [27].

3.5. On-the-fly Hybrid Model Checking for LTL Properties
Our LTL model checking module is used and parametrized similarly to the formerly introduced CTL

model checking algorithm: the LTL model checker evaluates an LTL expression on a given Petri net and
initial marking. The main LTL operators such as globally, future, next and until are supported. The
algorithm also handles the release operator as the dual of until, as well as weak next as the dual of next
[28], which provides the semantics for evaluating finite traces (weak next evaluates to true at the end of a
finite trace, while next will be false). Predicates of the LTL expression refer to the markings of the Petri
net. Saturation requires that the model has to be decomposed: a model decomposition can be provided
by the user or an invariant-based heuristic can be used. In our measurements (cf. Section 4.8) we used
model decompositions computed by external tools. Based on this information the model checking algorithm
evaluates if the model satisfies the requirement. In the following the underlying algorithms are discussed in
more detail.

The traditional steps to perform LTL model checking are summarized in Figure 2 [29]. First, the negation
of the desired property (given as an LTL expression) is translated into a Büchi automaton that accepts the
execution traces violating the original property. In the next step, the product of this automaton and the
state space of the model is computed to describe the set of violating traces that can actually emerge as
the behaviour of the model. If the language of the product automaton is empty, it means that there is no
behaviour in the model that can produce a violating trace, otherwise any such trace is a counterexample.
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Figure 3: SCC computation workflow with heuristics [31]

One of our most significant contributions to saturation-based model checking algorithms has been a
novel algorithm for linear temporal model checking introduced in [30] and defined in detail in [31]. The
motivation behind the new approach emerged from the need to combine the efficiency of saturation with
the favourable properties of explicit LTL model checking – the on-the-fly or forward search, which enables
the early termination of the algorithm as soon as a counterexample is found (see e.g. [32]).

Symbolic approaches usually follow the workflow described in Figure 2 directly, i.e. they compute the
set of reachable states in the product automaton [33, 34] and apply least fixed point computations to
obtain the reachable and accepting strongly connected components (SCCs) that imply the presence of
counterexamples [35]. While this approach can handle large state spaces due to the symbolic techniques
applied, it requires the complete exploration of the state space and thus suffers from state space explosion
even if a simple counterexample exists. In contrast, on-the-fly explicit algorithms perform the state space
generation, product computation, and emptiness check together in an incremental way.

To combine the benefits of both worlds, the following techniques were designed and applied to create
a hybrid LTL model checking algorithm that looks for counterexamples on the fly. All of the following
paragraphs describe original contributions that have not been defined or used in this way previously.

Product computation. As in the case of CTL model checking, we used saturation as a base algorithm.
However, in case of LTL model checking, it is applied to explore the combined state space of the model
and the specification automaton. It is not straightforward to keep the benefits of the algorithm, as the
synchronised transitions typically lose locality, which is one of the most important properties that saturation
strives to exploit. Our solution builds on the ideas of constrained saturation [20] to decompose the transition
relation and to compute the synchronized transitions on the fly. A detailed description of the algorithm can
be found in Section 4 of [31].

Incremental symbolic SCC computation. The key idea of our on-the-fly model checking approach is to stop
the exploration periodically and execute an SCC computation to find accepting cycles quickly. With the
existing algorithms, this approach would have an unacceptable overhead, therefore we designed a variant
of the classic symbolic SCC-hull computation approaches that can reuse previous results, making it mostly
incremental and greatly reducing the computational needs of consequent emptiness checks. The algorithm
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is designed for the iteration strategy of saturation, running every time when a node gets saturated (dividing
the analysis into a series of alternating exploration and SCC computation phases). More details can be found
in Section 5 of [31].

Recurring states heuristic. The repeated SCC computation is still costly even with the incremental symbolic
algorithm, so it is worth to detect the situations when there is no chance of finding an accepting SCC. One
of our heuristics is based on the following observation: any full traversal of a cycle will eventually find a state
that has already been discovered – we call these states recurring states. We have modified the saturation
algorithm to collect recurring states and use them as a cheap indicator of potential cycles: if no new recurring
states were found since the last exploration phase, executing the symbolic SCC computation algorithm is
not necessary.

Abstraction and local search heuristic. A more sophisticated heuristic uses abstraction to quickly decide if
a set of states encoded by a decision diagram node may contain an SCC. The key idea is to project the
system behaviour (transitions) to the currently processed component (see the componentwise processing of
saturation), with the local states read from the latest saturated node. This approach is similar to those
introduced in [36] and [37]. The resulting graph is sufficiently small to run explicit SCC computation
algorithms on it, and the abstraction is defined such that if there is no cycle in the abstract graph, then
there is no new SCC in the set of states encoded by the saturated node. The word new refers to the
assumption that all child nodes have been analysed previously, thus the method is not concerned with any
SCCs that could have been found in the previous phases. Details about the heuristics can be found in
Section 6 of [31].

The complete workflow combining the new algorithms and heuristics is shown in Figure 3. Experimental
data shows that both heuristics are efficient in quickly computing the “no SCC” cases. In addition, they
are orthogonal in the sense that there are cases for each when the other one fails to prove the lack of
SCCs. The combined algorithm has the advantages of symbolic approaches in terms of compact state space
representation and efficient traversal, as well as the ability of traditional explicit approaches to look for
counterexamples on the fly, enabling early termination if a simple proof is available.

3.6. CEGAR-Based Reachability Algorithms
Abstraction [38] is a general technique for reducing the complexity of a problem by hiding information

that is not relevant for the solution. The main challenge in abstraction-based methods is to find the proper
precision of abstraction that is coarse enough to tackle the complexity, but fine enough to be able to solve
the problem. Counterexample-Guided Abstraction Refinement (CEGAR) [39] is an automatic algorithm
that starts with an initial, coarse abstraction and refines it iteratively until the proper precision is obtained.
CEGAR-based reachability algorithms can check if a given marking m′ or a marking satisfying a set of linear
constraints (e.g. m(p1) + 2m(p2) ≤ 5) is reachable from the initial marking m0 of a P/T net PN, possibly
extended with inhibitor arcs. If the target marking is reachable, a firing sequence σ with m0[σ⟩m′ is also
generated as a witness. These algorithms are incomplete (i.e. they may leave a problem undecided), but are
also capable of handling nets with infinite state space in certain cases due to the nature of abstraction.

The CEGAR algorithm for Petri nets was first introduced in [40] and it served as the basis of our work
[41, 42]. This section presents the main concept of the original algorithm and our contributions as well.
Figure 4 presents an overview of the algorithm. The steps of the workflow are detailed below.

Initial abstraction. The input of the algorithm is a reachability problem, i.e. deciding whether some marking
m′ is reachable from the initial marking m0 of a Petri net PN . The initial abstraction is the state equation
in the form m0 +Cx = m′. The state equation has to be solved for the vector x ∈ N|T |, where x(t) denotes
the number of times each transition t ∈ T must fire in order to reach m′ from m0.

Solving the abstract model. Solving the abstract model (i.e. the state equation) is an integer linear pro-
gramming (ILP) problem. The feasibility of the state equation is a necessary, but not sufficient condition
for reachability, therefore if no solution exists, the target marking is not reachable. Otherwise, the solution
must be checked whether it corresponds to a firing sequence in the original model (i.e. the Petri net).
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Examining the solution. The solution of the state equation determines the number of times a transition
t ∈ T must fire in order to reach m′ from m0. However, x does not contain any information regarding the
order of transitions or whether they are enabled. Therefore, the algorithm has to explore the state space of
the Petri net with a limitation that each transition t ∈ T can fire at most x(t) times along a path. If m′

can be reached with this limitation, x is called realisable and it is an obvious proof (witness) of reachability.
In other words, the solution x is a Parikh image and the algorithm tries to find a corresponding realisable
firing sequence σ with ℘(σ) = x.

Refining the abstraction. If a solution cannot be realised, the ILP solver is forced to generate a different
solution, since there may be other, possibly realisable solutions of the state equation. This can be done by
extending the state equation with additional constraints (i.e. linear inequalities over transitions) that rule
out the non-realisable solution. The solution space is semi-linear, which means that each solution can be
written as a sum of a base solution and the linear combination of T-invariants (solutions of the homogeneous
part Cx = 0). Therefore, there are two types of constraints.

• Jump constraints have the form x(ti) < n, where n ∈ N, ti ∈ T . Jump constraints can be used to
obtain different base solutions, exploiting their pairwise incomparability.

• Increment constraints have the form
∑
nix(ti) ≥ n, where ni ∈ Z, n ∈ N and ti ∈ T . Increment

constraints can be used to reach non-base solutions. This means that a new solution x+y is obtained,
where y is a T-invariant.

After adding the new constraint, the state equation either becomes infeasible or a new solution is obtained.
At each non-realisable solution, multiple jump and/or increment constraints may be applied. Therefore, the
algorithm traverses the solution space until a realisable solution is found (thus the reachability property is
satisfied) or the state equation becomes infeasible and there are no more possibilities to backtrack (thus the
reachability property is not satisfied).

Our contributions. From the theoretical point of view, we examined the algorithm [40] and proved that the
heuristic calculation of new constraints is unsound by proposing an example net where the algorithm states
that a reachable marking is unreachable. We suggested a fix for the heuristic by detecting the unsound
situations [41]. We also investigated the completeness of the algorithm and presented some subclasses of
nets where the algorithm could not decide the problem (yielding inconclusive answer or non-termination)
due to its iteration strategy [41, 42]. We introduced the concept of distant invariants [42] and some search
space pruning techniques [41] to overcome this deficiency for some of the undecidable subclasses. We also
investigated the theoretical limits of our new approaches [42].

From a practical point of view, we extended the algorithm to be able to handle new types of problems. An
extension for submarking coverability allows us to define arbitrary linear constraints over the target marking
[41]. Another extension allows us to handle inhibitor arcs [41]. However, as inhibitor arcs lift the modelling
power of Petri nets to the level of Turing machines, this extension is obviously incomplete. Furthermore,
our implementation in PetriDotNet includes various search strategies, adapted to the characteristics of the
different models [42].
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3.7. Stochastic Analysis Algorithms
Recently the tool was extended to support the modelling and analysis of stochastic Petri net models.

The goal was to provide a configurable stochastic analysis framework where various state space exploration,
matrix representation and numerical analysis algorithms can be combined [43].

The Markovian stochastic Petri nets (Section 2.1.3) supported in PetriDotNet have exponentially dis-
tributed transition firing rates that may optionally depend on model parameters. Measures of interest that
can be expressed are state and impulse reward expressions. Impulse rewards are transformed into reward
rates for mean reward calculation.

Our tool implements a general workflow that consists of:

1. Exploration of the possible behaviours of the system to construct its state space;
2. Construction of the generator matrix of a continuous-time Markov chain (CTMC) based on the state

space and the exponential firing times of the model;
3. Numerical solution of the linear equation systems and differential equations arising from the CTMC;
4. Calculation of the specified reward measures based on the numerical solutions and reward expressions

specified by the user.

Reward measures (see Section 2.3.1 for formal definitions) an be calculated as a sum of elementary rate
and impulse rewards specified by CTL expressions and algebraic expressions of model parameters and the
current marking. For simple problems, constant place rewards per token of a selected place per unit time
are available as syntactic sugar, as well as constant transition rewards per firing of a selected transition.

Impulse rewards ρ(M, t) are emulated as rate rewards r(M) by setting the reward rate

r(M) =
∑

t∈T, t is enabled in M

Λ(t)ρ(M, t).

Therefore, solution algorithm were only implemented for rate rewards. Note that this simplification does
not neccessarily hold in the semi-Markov case. Hence immediate transitions are not supported and only
stochastic Petri nets with exponential distributions can be analysed.

The analysis workflow can calculate with steady-state and transient analysis techniques (see Section 2.3.2
for the description of analyses) the mean reward rates ER in steady-state and ER(t) at time t. In addition, the
mean accumulated transient reward EY (t) is also computable. The partial derivatives of mean steady-state
reward rates with respect to model parameters can be determined by sensitivity analysis. As convenience,
complex rewards, which are algebraic expressions of mean reward measures can be saved, e.g. to quickly
calculate the ratio of two mean values.

In mean-time-to-state-partition analysis, state partitions can be specified by CTL expressions which is
a convenient and expressive approach. The result of the analysis is the mean time to reach any of the state
partitions, as well as the probability of reaching each partition first. This analysis is useful when state
partitions represent failure modes of a modelled system and thus the mean time to first failure (MTFF) is
to be computed. Calculation of sensitivity values to model the parameter changes is also incorporated.

The analyses described above can be run either standalone or as a parameter study. In parameter studies,
the analysis can be run on a grid of model parameter values.

State space exploration and representation. Exploration of state spaces of stochastic models in PetriDotNet
is provided by the symbolic analysis facilities of our tool. Evaluation of CTL expressions as part of reward
expressions is facilitated by the tight integration between the stochastic and symbolic analysis capabilities
of PetriDotNet. Explicit state space exploration is also available.

When symbolic state space exploration is selected, the set of reachable markings of the stochastic Petri net
is represented as a Multivalued Decision Diagram. In addition, the mapping ι between markings and proba-
bility vector indices is represented as an Edge-Valued Additive Multivalued Decision Diagram (EV+MDD).
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Markov chain representation. The generator matrix of the continuous-time Markov chain associated with
the stochastic Petri net may be stored as a dense or a sparse matrix. In addition, the block Kronecker
decomposition form [44] is also available, which may achieve significant memory savings with little run time
overhead if the model is appropriately partitioned.

Block Kronecker decomposition expresses the generator matrix Q as the sum of its off diagonal-part,
which is a block matrix QO, and a diagonal matrix diag qD,

Q = QO + diag qD, QO =
(
QO[x̃, ỹ]

)ñ−1,ñ−1
x̃,ỹ=0 .

The indices x̃ and ỹ refer to partitions of the reachable state space that are called macro states.
Each block is a linear combination of Kronecker products

QO[x̃, ỹ] =
∑
t

(
λt ·

⨂
j

Q
(j)
t [x̃, ỹ]

)
,

where the factors are either sparse or identity matrices. Multiplication of a vector by a matrix in this form
can be performed by the Shuffle algorithm [45].

The construction of dense and sparse matrices from the explicit or symbolic state space and the stochastic
behaviours of the model is straightforward. On the other side, block Kronecker matrices first require
state space decomposition. This state space decomposition, as well as mapping between the original and
decomposed state indices of the model, is supported for both explicit [44] and symbolic [46] state space
representations.

A case study on large models of IaaS clouds and the application of state space and Markov chain
decompositions is presented in Section 4.7.

Numerical algorithms. Several numerical solvers are available in our framework. Implementations were done
from scratch to support the expression tree-based generator matrices.

Steady state measures, which are the solutions to eq. (2), as well as and mean times to reach state
partitions re calculated by solving usually sparse systems of linear equations.

Suitable solution algorithms in our framework are:

• Direct solution of the linear equation system by LU decomposition;

• Basic power, Jacobi and Gauss–Seidel stationary iterative solvers with optional overrelaxation;

• Group versions of Jacobi and Gauss–Seidel methods, in which subproblems arising from blocks along
the diagonal of the generator matrix are solved by an inner linear equation solver; and

• The BiCGSTAB algorithm, which is a popular Krylov subspace method that offers a good compromise
between convergence criteria, run time and memory requirements.

For a description of these solvers, we refer the reader to Chapters 4 and 7 of [47].
Transient solutions of CTMCs for immediate and accumulated distribution vectors are provided by the

well-known uniformisation (or randomization) algorithm as a solution to the initial value problem (1). In
addition, the TR-BDF2 implicit integrator is also part of the framework to handle stiff Markov chains that
may take many iterations to solve with uniformisation [9]. Being an implicit method, TR-BDF2 requires
the selection of a linear equation solver for the arising subproblems.

The built-in algorithms and configuration options allow the user to customize the analysis according to the
model to be studied and the available computational resources. However, the outcome of the customization,
i.e. the performance of the constructed configuration relies on the developers experience and knowledge
about the models/algorithms.

We also adapted the Krylov subspace solver IDR(s)STAB(ℓ) to our framework. By choosing the param-
eters s and ℓ appropriately, IDR(s)STAB(ℓ) becomes a common generalization of several other methods,
including BiCGSTAB(ℓ) and IDR(s) [48]. Thus, the run time and memory trade-off can be tuned according
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to the user’s preference. However, despite our modifications to the algorithm in [49], convergence behaviour
with CTMC generator matrices remained unsatisfactory, as their rank deficiency seems to pose an obstacle
for the algorithm.

A case study on the applications of steady-state and mean-time-to-state-partition analysis to hazard
rate calculations in automotive system is presented in Section 4.6. Moreover, we refer to [49] for additional
benchmarks of the various solution algorithms.

Symbolic evaluation. As an extension of the expression tree approach for matrices, we added support for
storing elements of the matrices and vectors involved in the analysis as algebraic expression trees. Instead
of fixed values, mean reward measures are obtained as symbolic functions of model parameters.

In contrast with methods specific to parametric Markov chains, such as [50], in principle any analysis
involving linear equation solvers can be adapted. Our tool symbolically computes the algebraic expressions
of the model parameters as a solution for mean steady state reward values and mean times to reach state
partitions.

Unfortunately, in the symbolic setting, linear equation solvers can only depend on the nonzero structure
of the matrices, as the numerical values of model parameters and hence the matrix elements themselves
must be treated as unknowns. Therefore, only direct linear equation methods are available and no pivoting
can be used. Therefore, in our tool, solving symbolically for algebraic expressions of the model parameters
is carried out by LU decomposition.

To reduce memory requirements, expression trees need to be simplified by algebraic manipulations and
constant folding during analysis. The user can select at which points this simplification should happen.

High-precision evaluation. Because pivoting and other techniques to improve numerical stability are unavail-
able in symbolic evaluation, catastrophic cancellation and underflow may occur during constant folding. To
alleviate these problems, constants in expression trees can be represented by a .NET arbitrary-precision
floating-point library8 in addition to double-precision floating-point values.

For use in specialized scenarios, high-precision arithmetic is also supported in purely numerical evaluation.
In this mode, matrix and vector elements are arbitrary-precision numbers and any linear equation solver
can be run. Perhaps surprisingly, we found no improvement of the convergence behaviour of numerical
algorithms when ported to the arbitrary-precision data structures compared to ordinary double-precision
arithmetic. Therefore, this mode of operation is only of limited use in problems where many significant
digits of mean reward values are desired.

Our contributions. Our contributions are twofold. From the practical point of view, we have extended
the framework to provide configurable stochastic analysis. PetriDotNet provides a huge number of possible
combinations of the various stochastic analysis algorithms.

From the theoretical point of view, we have bridged the gap between the symbolic state space representa-
tion and the various matrix representations of the stochastic behaviour. In addition, we compared the various
configurations of the algorithms and we also experimented with the extended algorithm of IDR(s)STAB(ℓ).
These findings were summarized in [49].

4. Industrial Case Studies

This section is dedicated to an overview of the various case studies where PetriDotNet was used as a
modelling or analysis tool. In this paper we focus on the industrial applications of PetriDotNet. Information
about the different educational uses of PetriDotNet can be found in [1]. Each use case is described briefly,
and the reader is referred to the related publications for more information.

In the rest of the section, the following use cases are discussed:

8https://peteroupc.github.io/Numbers/
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• Section 4.1 describes the application of PetriDotNet to model and formally verify a safety logic of a
nuclear power plant using saturation-based CTL model checking;

• Section 4.2 presents a usage of PetriDotNet to model and simulate the power consumption of sensor
nets;

• Section 4.3 reports about the R3-COP project9, where PetriDotNet was used to generate test input
sequences for testing the robustness of communicating robots;

• Section 4.4 discusses a project in which urban public transport networks were modelled and analysed
using Petri nets and PetriDotNet;

• Section 4.5 shows a case study where PetriDotNet was applied to model and study railway interlocking
systems;

• Section 4.6 is dedicated to a case study of hazard rate calculations in a fault-tolerant automotive
control system using the stochastic analysis capabilities of PetriDotNet;

• Section 4.7 describes the transformation of a complex stochastic model of an IaaS cloud for analysis
with PetriDotNet; and

• Section 4.8 presents the performance of the LTL model checking algorithm of Section 3.5 on models of
the Model Checking Contest (MCC), which includes not only benchmark models, but some industrial
problems as well (such as a complex workflow model from IBM).

The models for the case studies in Sections 4.2, 4.5 and 4.8 were taken from the cited publications (or
from their authors). All other models were constructed by the authors and their colleagues.

4.1. Verification of a Safety Procedure in a Nuclear Power Plant
Background. In [51, 52], Németh et al. described the modelling and verification of a safety procedure imple-
mented for the Paks Nuclear Power Plant, Hungary. This safety procedure detects the so-called primary-to-
secondary leaking (PRISE) event and initiates a safety response. This is a major fault of the nuclear reactor
that initiates a reactor trip (emergency shutdown of the reactor) [51]. In addition, to avoid the release of
contaminated water to the environment, the safety procedure activates specifically designed safety valves to
drain the faulty circuits and prevent the release of contaminants. As the draining has a major impact on the
plant, the safety procedure should initiate this action if and only if the PRISE event occurs. These serious
consequences and the complexity of the logic requires a well-founded verification to make sure its adequate
design and implementation.

The implementation of this safety procedure (PRISE safety logic) is included in the software of the reactor
protection system [52]. The PRISE safety logic is described as a function block diagram (FBD), similar to
the FBD formalism specified in IEC 61131-3. This description consists of interconnected blocks (function
blocks, FBs) representing logic operations (AND, OR, NOT gates), stateful elements (e.g. RS flip-flops) and
timer modules (TP pulse modules and TON delay module, as defined in IEC 61131-3). The authors of [52]
have chosen coloured Petri nets as the modelling formalism. Their experience is that the “transformation
[from FBD to CPN] was not straightforward, as the semantics of the FBs have a heterogeneous, semi-formal
description consisting of truth tables, timing diagrams, together with textual information” [52]. Various
analyses were used to check if there can be any false positive (spurious activation) or false negative (masked
actuation) PRISE events indicated by the safety logic. However, due to the complexity of the logic, the
analyses relying on the complete state space were not successful. Verifying the correctness of the safety logic
was evaluated on a simplified model and using special analysis techniques manually.

Later work [53] compared various modelling and analysis tools (Design/CPN, UPPAAL, SAL) for this
case. The authors report that Design/CPN and UPPAAL were not able to handle the complete state space.
In case of SAL the verification was successful, but the modelling was difficult and needed various manual
transformations, therefore it was much more error-prone than the other approaches.

9http://www.r3-cop.eu/
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Modelling in PetriDotNet. Based on the modelling principles defined in [52], we have provided a CPN
model for the PRISE safety logic using PetriDotNet [16]. Modelling the safety logic was less convenient in
PetriDotNet than using Design/CPN, as the latter is a much more mature modelling tool. However, the
CPN formalism supported by PetriDotNet is expressive enough for this case. The CPN model follows the
same structure as the original FBD model, therefore the model is easy to understand and maintain.

CTL model checking in PetriDotNet. The saturation-based CTL model checking algorithms extended to
CPNs were able to explore and store the complete state space of the PRISE safety logic model [16]. The
CTL formalism was rich enough to express the desired safety and liveness requirements and to show their
satisfaction. The state space exploration of the model took a considerable amount of time, about 15 minutes.
However, after the exploration phase, the evaluation of each CTL expression took less than 10 seconds. The
size of the model varies depending on the chosen parameter values. The model used for the mentioned
measurements contains 5 × 1012 states; 56 places, 62 transitions, 264 edges and 7 different colour sets.

Later, further improvements were made to the saturation algorithms targeting CPNs. Various minor
improvements were made to the implementation of the algorithm to improve its efficiency. One of the weak
points of the saturation applied to CPNs is the efficient construction of the next-state relation. In [25] we
have proposed the so-called lazy saturation that allows the decomposition of the next-state relation into
smaller, disjunct relations. It allows to reduce the overhead of the on-the-fly local state space exploration,
i.e. the overhead caused by the frequent updates of the next-state relation, which is required every time a
new local state is found. For more details of the lazy saturation we refer the reader to [25].

These improvements have successfully reduced the state space exploration time and memory consumption
compared to the previous results reported in [16], to about 4 minutes from the previous 15 minutes.

Summary. The experiments with the verification of the PRISE safety logic have demonstrated that (1)
CPNs are useful for modelling industrial modules, (2) the PetriDotNet tool is capable of modelling industrial
modules, and (3) the novel saturation-based CTL model checking algorithms for CPNs make the verification
of complex, industrial modules feasible.

4.2. Analysis of Energy Consumption in Sensor Networks
Background. Sensor networks are often considered as delay-tolerant networks. In these cases, the fastest
possible transmission is not the topmost priority. Therefore, multiple messages can be aggregated, reducing
the total amount of data to be transmitted (i.e. only one header is needed for the aggregated message,
saving n − 1 headers in case of aggregating n messages). This improves the energy-efficiency, which is
a major concern for the devices often operated by small-scale energy sources. The goal of the work of
Milánkovich et al. [54] is to find an optimal aggregation setting that results in minimal energy consumption,
but satisfies the given delay requirements10.

Modelling and analysis in PetriDotNet. The paper [54] models a sensor network (chain of sensors) and
analyses the effect of aggregation on energy consumption. For this purpose the stochastic modelling features
of PetriDotNet were used. To determine the energy consumption, the authors calculate the stationary
distribution of the model using the large-scale simulation feature of PetriDotNet. The authors state that
“[t]he determination of the equilibrium distribution was carried out by the previously presented PetriDotNet
software, because according to our tests, it was the fastest and it generated the best output results” [54].

To find the best configuration, Milánkovich et al. compared models with different aggregation number
vectors. The elements of these vectors determine for each node in the sensor network the amount of data to
be aggregated. For each aggregation vector a different SPN model is needed. Generating the permutations of
aggregation number vectors and the corresponding SPN models, then executing PetriDotNet and processing
the results were automated using Matlab. In addition, the authors used a C++ simulation to determine the
total delay time to exclude the aggregation number vectors leading to unacceptable overall delays.

10This section summarises the work of Milánkovich et al. based on [54]. The authors of the current paper were not involved
in the development of this case study.
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The authors of [54] report the summary of 3125 different aggregation settings in a given sensor network.
Using the method described above they were able to find the aggregation numbers with the required delay
and energy consumption characteristics. It was also shown that the same delay can be achieved by different
aggregation settings having widely varying energy consumptions.

Summary. This case study demonstrates that (1) PetriDotNet can be used as an underlying analysis engine
(in this case integrated into a workflow implemented in Matlab), and that (2) the simulation capabilities of
PetriDotNet may provide useful information about characteristics of a (stochastic) model.

4.3. Test Input Sequence Generation for Laser-Guided Vehicles
Background. The PetriDotNet tool was also used in the Resilient Reasoning Robotic Co-operating Systems
(R3-COP) project that aimed to “enable the production of advanced robust and safe cognitive, reasoning
autonomously and co-operative robotic systems at reduced cost.”11 PetriDotNet and the underlying analysis
methods were used to generate test input sequences for testing the robustness of communicating robots.

A demonstrator application in R3-COP used laser-guided vehicles (LGVs). LGVs are operated by a
central computer that assigns distinct paths to them and ensures that the LGVs do not collide, provided
that they follow the assigned paths. The goal of this part of the project was to test the communication
protocols between the LGVs and the central computer.

Modelling and analysis in PetriDotNet. In one of the applied testing approaches we have developed a CPN
model of the communication protocol in order to generate test input sequences: traces of the model (lists
of events) that satisfy given requirements (formalised in CTL or as Boolean predicates). Some of the CPN
models had simple structures: they had only 10–12 places and transitions, however they used complex colour
sets, typically with two- or three-dimensions (i.e. the colour sets assigned to the places were cross products
of two or three simple colour sets). In other cases the model size was more significant (with approximately
hundred nodes), but the colour sets were simpler.

Three main scenarios were considered [55]:

• generation of a trace (and thus the corresponding test sequence) to a state satisfying a given require-
ment R,

• generation of a trace which goes through states satisfying requirements R1, R2, . . . , Rn in the given
order,

• generation of a trace which goes through states satisfying requirements R1, R2, . . . , Rn in any order.

The first scenario allows the generation of a trace that reaches a specified protocol state defined by R.
This is useful to test the functional correctness of the implementation by covering the relevant states defined
by the test engineer.

The second scenario was used to force some specific states to occur in the trace: these specific states rep-
resented by R1, R2, . . . , Rn belonged to extreme behaviour with respect to the protocol operation, especially
resulting from the sequence of processing invalid input data or boundary values. This way the robustness
of the protocol implementation was tested.

The third scenario allows the specification of reaching various internal error states in the trace, this way
testing the correctness of error handling and error processing in the protocol implementation.

In [55] we have proposed solutions for all three scenarios based on the bounded saturation-based CTL
model checking algorithm. As the first scenario is a special case of the other two, in the following we assume
that the trace shall go through multiple states satisfying multiple requirements.

The idea of these algorithms is to find a path from the initial state s0 to a state si1 that satisfies R1
(in the ordered case) or any requirement Ri (in the unordered case). The bounded CTL model checking
algorithm is used to find a state that satisfies R1 or some (one or more) expressions Ri. When such state is

11http://www.r3-cop.eu/wp-content/uploads/2012/07/2012.07.04.Banner-R3-COP.pdf [Online, accessed: 07 Oct 2016]
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found, it is possible to extract the path (intermediate states, or required transition firings) between s0 and
si1 from the decision diagram representation of the state space. This is then performed iteratively, while
there are more requirements to be satisfied by the trace: the trace generation continues from the last sij
state and looks for the next requirement to be satisfied (or for any requirement that is not satisfied yet, in
the unordered case).

This is a greedy algorithm that does not necessarily find the optimal (shortest) trace. However in practice
it was possible to generate traces satisfying the given requirements with acceptable lengths. Furthermore,
the simple greedy algorithm was fast: in one of the cases reported in [55], the generation of a trace for 5
requirements (consisting of 63 states in total) on a model with 2.4 × 109 states required only 13 seconds.
The generated traces (list of events) were later used as test input sequences.

Summary. This case study demonstrated that the combination and extension of pre-existing algorithms
(e.g. bounded CTL model checking based on saturation, and saturation for CPNs) allow the application
of PetriDotNet to solve novel verification tasks. In this case, the saturation algorithms implemented in
PetriDotNet allowed to generate complex test sequences satisfying various requirements, making the testing
of LGVs more efficient. The development of the presented algorithms was motivated by the R3-COP project,
however they are now part of the PetriDotNet framework and can be reused for other use cases.

4.4. Modelling and Analysis of Public Transportation Networks
Background. The goal of an internship project at the company evopro Innovation LLC was to examine the
possibility of Petri net-based modelling and analysis of public transportation networks. The main purpose of
the analysis was to determine whether a network with a given topology and capacity can fulfil the travelling
needs of the passengers. Modelling was done using the editor of PetriDotNet, while analysis was conducted
using the CEGAR plug-in (Section 3.6).

Modelling in PetriDotNet. The basic concepts that had to be modelled were passengers, stops, lines and
vehicles. In the first basic model, passengers were modelled by tokens and stops by places for the waiting
passengers. Thus, the initial and target locations of the passengers could be represented by the marking
of the Petri net. A vehicle was modelled by places representing its free capacity and places/transitions
representing its route. A line was a collection of vehicles with the same route.

Moving on from the basic model, there were many modelling questions for more advanced, real life
concepts. For example, stops usually have two directions, vehicles have different types of places (e.g. sitting,
standing). These problems could be solved in many different ways using the modelling possibilities of Petri
nets. There was however, an interesting question related to vehicles and lines. As mentioned before, vehicles
for the same line were copies of each other. A straightforward request was to be able to define the line only
once and to instantiate it as many times as needed. Although PetriDotNet only supports hierarchical Petri
nets to a limited extent by the means of coarse transitions, this construct provided a suitable solution. A
line was modelled with a coarse transition and vehicles on that line were instantiations of the transition.

Analysis in PetriDotNet. The main goal of the analysis was to determine if the network modelled by the
Petri net could fulfil the needs of the passengers, which were described by markings. Therefore, the most
straightforward technique was to use reachability analysis. A further advantage of reachability analysis was
that more advanced metrics could be calculated based on the firing sequence between the initial and target
markings by a simple post-processing application. These metrics include for example the distance covered
by vehicles, the minimal/maximal/average occupancy, the passenger traffic at each stop and the number of
transfers between lines.

We created a sample model with 3 lines, 9 stops and 3 possibilities for changing lines, requiring around
50 places and 50 transitions. Explicit state space exploration algorithms could not handle the state space
explosion problem, therefore we applied the CEGAR-based reachability algorithm. The algorithm was
executed for various problems with different complexities. Unfortunately, the CEGAR-based algorithm
could only solve the simpler instances within a reasonable amount of time. However, for a future work
we identified some optimization possibilities that could improve the performance of the algorithm based on
certain domain-specific properties of the models.
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Summary. Although the analysis results were partly negative, the case study still demonstrated that Petri
nets may be capable of modelling public transportation networks with industrial relevance, especially with
some of the advanced features of the PetriDotNet editor, such as coarse transitions. The case study also
revealed that reachability analysis can provide useful metrics about the network, however, analysing net-
works with real-life size would require additional optimizations in the algorithms, motivating the need for
improvement.

4.5. Modelling Railway Interlocking Systems
Background. Various interlocking systems are in use to ensure the safe operation of railways. They mainly
ensure that “a movement authority is given only when it is safe to do so”, “points and other movable
infrastructure are set to and locked in the correct position for any movements which are authorised over
them or for which they provide protection” and the “interlocking and route locking associated with a
movement authority is only released when it is safe to do so” [56].

In the Hungarian practice interlocking systems are mainly developed based on two principles: tabular
(route-related) interlocking and geographical interlocking. The route-related principle uses the topology
of the interlocking area (station or junction) and it builds on a given list of all possible routes and their
dependencies. Based on this list, the elements of the route are locked together, at once. The geographical
principle relies directly on the railway objects (signals, points, track sections, etc.) and their individual
functionality. Each railway object representation is connected to its neighbours, and the communication
between the start and end-point of a desired movement will build up the safe, locked route (in a “distributed”
manner).

To compare these two principles, a group of domain experts12 have developed Petri net models of
interlocking systems for a selected station. These models include the main functionalities of the interlocking
systems, such as setting and locking points; selecting, locking and releasing routes; setting signals; and
shunting.

Modelling in PetriDotNet. Two Petri net models were developed using PetriDotNet, one for each interlocking
system principle. As at this stage the modelling was done manually, only a small station was modelled.
Therefore the resulting models contain approximately 100 nodes (places and transitions) each. According to
the feedback of the domain experts, it was easy to learn and use PetriDotNet for the efficient modelling of the
interlocking systems. The support for hierarchical models helped to structure the models, which may allow
building models of larger interlocking areas in the future. The simulation (token game) feature provided
useful feedback about the behaviour of the models.

Analysis in PetriDotNet. The key features of interlocking systems were checked on both models, for each
possible route. For this purpose, the requirements were formalised in CTL. These requirements include
the following examples: “A signal can only be cleared (set to a state permitting train movements) if all
corresponding points are set and locked in correct position.” or “While a signal is cleared, the correspond-
ing points cannot be released or set to a different direction.” These requirements were verified using the
saturation-based CTL model checking included in PetriDotNet. The developers reported that the support for
the full CTL formalism helps the formalisation of requirements. This is an advantage compared to UPPAAL
(that supports only a CTL subset), however UPPAAL provides more help to the users in case of unsatisfied
requirements, when an interactive counterexample is provided visually.

It was also reported that the performance of the saturation-based algorithms highly depend on the
decomposition of the model. Without knowing the principles of the underlying model checker algorithms,
it is difficult to provide a nearly optimal decomposition for the model. Currently only basic heuristics are
provided for automated model decomposition in PetriDotNet. This underlines the need for better, more
robust heuristics for model decomposition that would help the non-expert users and which is a planned
future work.

12The modelling was performed by B. Farkas and G. Lukács.
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A similar work was carried out and published independently by Cseh et al. in [57], which also used
PetriDotNet as modelling and analysis tool. In that work the analysis relied on checking the structural and
dynamic properties of the Petri nets, instead of using CTL model checking.

4.6. Hazard Rate Calculations in a Fault-Tolerant Automotive Control System
Background. The stochastic analysis capabilities of PetriDotNet were used in collaboration with an industrial
partner to derive reliability measures for an automotive subsystem. The design of the system employs dual
modular redundancy and self-checking mechanisms for fault tolerance.

Modelling in PetriDotNet. The subsystem was modelled using the SPN formalism. The possible events that
can occur during operation, e.g. component faults, were mapped to transitions with exponentially distributed
firing rates. Specification of event rates heavily relied on the model parameter support of our framework,
which facilitated the quick reconfiguration of the model.

Critical sets of states {D1, D2, . . .} were specified by CTL expressions. These sets correspond to hazards
with different severities. Upon reaching a hazard state the system is reset to its initial state. Measures
of interest were the hazard rates, which are the frequencies of reaching the critical state partitions in the
steady-state of the system according to system resets.

Analysis in PetriDotNet. Calculation of the hazard rates is possible by two of the stochastic analysis tools
provided by PetriDotNet, which were described in Section 3.7. These approaches, which we used to determine
hazard rates for the automotive system, can be applied to other models by the users of our tool.

Firstly, direct computation can be performed by steady-state analysis. This approach assigns an impulse
reward to transitions that reset the system from the critical states Di to the initial state. The expected
steady-state value of this reward is equal to the hazard rate of reaching Di.

Exploring and storing the state space and stochastic behaviour of the acquired model was feasible due
to its modest size of 34 states. However, as some differences between the transition rates are several orders
of magnitude, the obtained model is very stiff. Numerical solution of the steady-state problem was difficult,
as well as approximation by transient analysis with a long time interval.

To reduce these problems, mean-time-to-state-partitions analysis was used instead, which was added to
PetriDotNet after we face difficulties with steady-state hazard rate calculation. Because the model is reset
to its initial state upon reaching any critical state D = D1 ∪D2 ∪ · · · , the mean time of reaching D can be
interpreted as the common measure Mean Time to First Failure D (denoted as MTFF(D)), thus it is the
expected value of a phase-type distributed random variable that can be derived from the model.

Let HR(Di) denote the hazard rate associated with the critical states Di and p(Di|D) denote the condi-
tional probability of residing in the state partition Di upon reaching any critical state from D. The proba-
bility p(Di|D) can be calculated from the parameters phase-type distribution associated with the model and
rates of transitions from noncritical states to Di. As the hazard rate can be expressed as HR(Di) = MTFF(D)

p(Di|D) ,
calculation of the measure of interest is possible by mean-time-to-state-partition analysis instead of steady-
state analysis. For models where this simplification is possible, mean-time-to-state-partitions analysis gives
users a tool for hazard rate calculations even in stiff models.

The linear equation systems associated with the mean-time-to-state-partition analysis were simpler and
had better numerical properties than the equivalent steady-state problems, which allowed analysis of the
system with a wider range of parameters. Moreover, the modified analysis allowed simplified modelling by
treating the critical states as deadlocks instead of adding reset transitions to the model. Resets were treated
implicitly as part of the mean-time-to-state-partition analysis instead.

Parameter study and visualization. The original hazard rate analysis was conceived as a parameter study.
Around one million measure calculations in a predefined subspace of the parameter space were performed
to find configurations with acceptable reliability measures.

The acquired results were used to visualize and analyse the safety metrics of the subsystem in an inter-
active web browser interface, which was created in R [58] with the Shiny web application framework13.

13http://www.rstudio.com/shiny/ [Online, Accessed 01 Nov 2016]
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Inspired by this parameter study, additional parametric analysis features were added to PetriDotNet.
Symbolic evaluation allows extracting parametric formulas of measures of interest from the model instead
of numeric values. For the smallest models created for hazard rate calculation the resulting formulas can be
used instead of repeated calculations for each parameter binding to obtain hazard rate values. However, for
larger models, symbolic evaluation quickly became intractable as the size of the formulas grew.

Summary. This case study demonstrated that extensions to stochastic analysis, such as mean-time-to-state-
partition calculation and symbolic evaluation, allow more robust analysis of extra-functional requirements
and easier modelling of fault-tolerant systems. However, it also revealed scalability issues in steady-state
analysis, hence symbolic evaluation will have to be addressed in a future work.

4.7. IaaS Cloud Scalability Modelling
Background. Ghosh et al. [59] studied the performability, availability and resilience of an IaaS cloud system
by generalized stochastic Petri nets (GSPNs). These models were stochastic Petri nets extended with
immediate transitions, guards and state-dependent transition rates.

Instead of creating a monolithic GSPN, Ghosh employed the interacting sub-models approach to model
an IaaS cloud, which is an approximation method offering considerable memory savings. Each sub-model
was expressed as a parametric Markov chain depending on reward measures that can be extracted from the
solutions of other sub-models. Approximate solutions to the monolithic model can be obtained by iteratively
solving the parametric sub-models until a fixed point is reached.

Modelling in PetriDotNet. To validate and benchmark the stochastic analysis capabilities of PetriDotNet,
we attempted to model and analyse the IaaS performability GSPN from [59]. As immediate transitions and
guards are not available in the current version of PetriDotNet for stochastic analysis, a two-step process was
needed to create compatible models.

First, the monolithic GSPN was translated into a textual domain-specific language created within the
Eclipse Xtext14 environment. Because not all features of GSPNs were implemented in the DSL, this step
is unfortunately manual. For example, there were several restrictions of the immediate transitions and
transition guards.

After the manual translation of the model into a simpler form, a PNML file containing an ordinary
stochastic Petri net was generated from the DSL. This model was loaded into PetriDotNet and analysed.

Analysis in PetriDotNet. The resulting model could serve as a large-scale benchmark of our stochastic anal-
ysis module, since the state space of the monolithic GSPN increased dramatically with size of the modelled
IaaS cloud. Additionally, it provided insights into the combination of model transformation techniques with
stochastic analysis.

The IaaS cloud scalability model can be parameterized with the number of servers and the number of
virtual machines per server, which affect the size of its state space. Due to the memory efficient represen-
tations of the state space and the stochastic behaviour, the analysis could run with huge state spaces with
up to 2 × 107 states. State space decomposition could be applied to models up to 8 × 108 states, however,
in those cases, numerical solution timed out.

In addition, this model revealed that by properly decomposing the model, block Kronecker representation
can not only save memory, but can also reduce computation time.

However, the experiment also revealed several shortcomings of our stochastic analysis module. The
lack of support for the GSPN formalism required manual intervention for model import. Moreover, even
with the two-stage import process, state-dependent rates were lost from the original monolithic GSPN.
Thus, the numerical results were not representative of the actual performance of the IaaS cloud. We are
currently developing support for GSPNs with guards and state-dependent rates to alleviate these problems
and increase the expressiveness of the models supported by our tool.

14http://www.eclipse.org/Xtext/ [Online, Accessed 01 Nov 2016]
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4.8. Model Checking Contest – Performance Evaluation of LTL Model Checking
Since the implementation of the LTL model checking algorithm is relatively new, it has not been used in

any of our industrial projects so far. Nevertheless, we have evaluated its performance on a selection of models
from the 2014 edition of the Model Checking Contest15 (MCC), which includes some industrial problems
among the many benchmark models (e.g. IBMB2S565S3960, the workflow model of a problem described by
IBM). Since at that time, there were no verified correct solutions in the LTL track (and no tools competed
in 2015 either), the implementation in PetriDotNet was compared to the following three competitor tools.

• NuSMV 2 [60] is a well-established tool that has a large variety of implemented algorithms, including
BDD-based traditional SCC-hull algorithms. Before 2014, it was a popular choice for a reliable and
mature tool for symbolic model checking. Measurements were conducted using the check_ltlspec
command with flags -df (avoids the computation of all reachable states) and -dcx (disables the
computation of a counterexample).

• nuXmv [61] is the successor of NuSMV. It was freshly released at the time of our experiments with
some of the latest algorithms. It has been used with the K-liveness algorithm implemented on top of
its IC3 engine (command check_ltlspec_klive), again without counterexample generation.

• ITS-LTL [37] is a powerful model checking tool using set decision diagrams (SDDs) [62] and saturation
along with various model checking algorithms and optimizations. Back in 2014, it was the only tool
combining saturation with LTL model checking, therefore it was selected as the main competitor.

All tools were provided with the same static and flat variable ordering (except nuXmv where the variable
ordering is not applicable). The hierarchical ordering of ITS-LTL was not used in order to study the SCC
computation capabilities of all tools under the same circumstances. Models of the MCC were given in the
PNML format [63], which is not supported directly in any of the tools apart from PetriDotNet. Conversion
to the CAMI format (used by the tool CPN-AMI) suitable for ITS-LTL was performed with a standard tool
available online16, while the transformation from Petri nets to the SMV format supported by NuSMV and
nuXmv was implemented based on the ideas described in [64].

At the time of the experiment, 27 scalable models were available from the MCC website (excluding those
that had a coloured Petri net model only), yielding a total of 157 model instances. The SPOT toolset [65]
was used to generate 50 LTL expressions for each model, producing a total of 7 850 benchmark cases. More
details about the benchmark setting can be found in [31].

Timeout was set to 600 seconds for each individual measurement. In addition to model checking with the
four tools, a simple state space generation using saturation was also executed for every model to provide an
insight into the overhead and benefits of the on-the-fly model checking algorithm presented in Section 3.5.
Execution times were measured by every tool individually. The results were visualized on scatter plots,
which can be seen in Figure 5.

The four plots compare the execution time of PetriDotNet to that of state space generation with satura-
tion, ITS-LTL, NuSMV 2 and nuXmv, respectively. Each dot represents a benchmark case: the horizontal
axis implying the execution time of PetriDotNet and the vertical axis belonging to the other tool or state
space generation. This way, a dot above the diagonal line represents a case which PetriDotNet solved faster
than its competitor. The borders of the diagram represent cases which could not be solved in 600 seconds
(all in all, 1 474 cases remained unsolved by every tool).

As the leftmost plot suggests, model checking with PetriDotNet is usually faster than the execution of
state space generation only, mostly due to the efficiency of the incremental and on-the-fly algorithm that
can be stopped in case a counterexample is found. Sometimes, state space generation was successful, but
model checking was not: this shows that incremental operation and the optimizations presented in Section
3.5 cannot always compensate the overhead of model checking complex properties.

15http://mcc.lip6.fr/2014/
16http://pnml.lip6.fr/camipnml/
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Figure 5: Comparison of execution times for 3 tools and saturation-based exhaustive state space exploration on a selection of
MCC models and randomly generated LTL expressions [31]

In terms of the other model checking tools, the vast majority of cases show the competitiveness of
PetriDotNet. The scales of the axes are logarithmic, thus the distance of a dot from the diagonal indicate an
exponential difference in the execution times of the tools. ITS-LTL showed the best performance among the
competitors, but it could outperform PetriDotNet in very few cases only. Since it is also based on saturation
and uses abstraction to perform on-the-fly model checking, these results are the most significant. Although
NuSMV was usually the last to finish the computation, in some cases it was faster than PetriDotNet, even
more significantly than ITS-LTL. This suggests that the advanced algorithms of ITS-LTL and PetriDotNet
sometimes have a trade-off – “traditional” algorithms are still more suitable for certain problems. Results of
nuXmv are very different from the results of other tools. This is due to the SAT-based algorithm it uses that
has different techniques and strengths. It has outperformed PetriDotNet in most of the cases, even solving
many that caused a timeout in PetriDotNet.

More details about the results can be found in [30, 31]. The results and the benchmark package can be
downloaded from our website17. All in all, the results were convincing and demonstrated the competitiveness
of PetriDotNet in the model checking of LTL properties. Since that time, the LTL track of the Model
Checking Contest has been populated by a number of tools, which offers an opportunity to participate with
PetriDotNet and obtain neutral results – something to be expected in 201818.

5. Related Work – Petri Nets in Industrial Case Studies

Petri nets and their variants have been widely used to model and analyse real-life, industrial systems
in various domains ranging from business process modelling to aeronautics. Many of these examples can
be found in survey papers such as [66] and [67] or on the websites of the tools (e.g. CPnets19). The main
purpose of our paper is to present our industrial applications of Petri nets in particular with the PetriDotNet
tool. Therefore, as a related work we describe some recent industrial case studies conducted by other teams
and tools. We present related case studies grouped by the type of Petri nets they use. We refer to similarities
in our case studies and we also discuss if PetriDotNet could have been used in the same setting. However,
we do not try to reproduce and compare the case studies as most of them lack details and artefacts are not
available.

Place/Transition nets. Industrial case studies show that P/T nets already provide useful modelling and
analysis possibilities. Stahl et al. transformed globally asynchronous locally synchronous circuits to Petri
nets and reduced hazard detection to a reachability problem solved by the LoLa tool [68]. Talcott and Dill
used Petri nets to answer reachability queries in biological processes interactively [69]. They implemented a
custom tool (named Pathway Logic Assistant), which relies on LoLa. PetriDotNet also supports reachability

17http://inf.mit.bme.hu/en/tacas15
18Note that participation so far has been hindered by technical difficulties, as PetriDotNet currently runs on Windows only.
19http://cs.au.dk/cpnets/industrial-use/
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analysis with its discrete analysis algorithms (Section 3). For example, in our case studies the modelling of
public transportation networks (Section 4.4) targeted reachability and the verification of a safety procedure
in a nuclear power plant (Section 4.1) also involved such queries. Fahland et al. checked a large number of
industrial business process models for soundness (absence of deadlock, lack of synchronization) using three
different approaches, one of them based on Petri net CTL model checking of the LoLa tool [70]. They
concluded that such checks can be performed in a few milliseconds, enabling a tight integration into the
modelling process. PetriDotNet also supports efficient CTL model checking of P/T nets with the saturation
algorithm (Section 3.4), as demonstrated in the railway interlocking case study (Section 4.5). Mendes
et al. described services of a service-oriented architecture with Petri nets and proposed formal composition
techniques to model more complex services [71]. Their experiment on a flexible transport system revealed
that modelling the individual components could be done before specifying the control layout. Manyari
et al. transformed discrete event system (DES) models of an oil production plant to labelled Petri nets and
created a diagnoser that could recognise faults [72]. The previously discussed two case studies could not be
solved with the base functionality of PetriDotNet. However, PetriDotNet makes the extension of its features
possible by providing an easy-to-use plug-in interface. With some specific extensions PetriDotNet could be
made suitable for such tasks.

Timed, hybrid, stochastic Petri nets. Timed, hybrid and stochastic extensions of Petri nets allow the analysis
of non-functional and quantitative aspects. Bicchierai et al. integrated formal methods into an industrial
software process by translating UML-MARTE (Unified Modeling Language Profile for Modeling and Analysis
of Real-Time and Embedded Systems) specifications into pre-emptive time Petri nets [73]. They verified
several non-functional requirements through state-space enumeration, including best/worst case completion
time, deadlines and minimal laxity. Gaudel et al. used hybrid particle Petri nets (HPPN) to monitor the
health status of the NASA K11 rover [74]. Based on the HPPN model, a diagnoser provided a distribution
of belief over the possible health statuses even in an uncertain environment. Currently PetriDotNet does not
support hybrid or timed nets.

Rogge and Weske proposed a method to predict remaining execution time of business processes using
stochastic Petri nets with generally distributed transitions (GDT SPN) [75]. They applied their method at
a Dutch logistics provider and showed that it was more accurate than earlier methods. Horváth used deter-
ministic and stochastic Petri nets (DSPN) to analyse the production at a Hungarian window manufacturing
company and to determine the throughput and bottleneck of the process [76]. Wan et al. built stochastic
Petri net models of an integrated modular avionics (IMA) architecture and studied its health monitoring
and fault management scheme [77]. They considered two performance metrics, namely availability and
mean system response time. Amodeo et al. combined a genetic algorithm with a stochastic Petri net-based
simulator tool to find an optimal inventory management policy under multiple objectives [78].

In general, these case studies rely on extensions to stochastic Petri nets. In the future, we plan to
elaborate such complex semantics also in PetriDotNet.

Coloured Petri nets. Bergenthum and Shick used coloured Petri nets to reveal faulty processes of a medical
laboratory based on log files [79]. They formed words (sequences) from events belonging to the same patients
and split the language (i.e. the set of possible sequences) to valid and faulty words with the help of domain
experts. Then, a coloured Petri net model was constructed where only valid words are executable. The CPN
model was transformed into PL/SQL code in order to check for faulty processes directly in the log database.
Gottschalk et al. proposed transformations from Protos – a popular tool for business process modelling –
to coloured Petri nets [80]. Although Protos has a built-in simulation engine, the user cannot interact or
inspect the simulations. The transformed models in contrast, can be executed by CPN Tools, using its
extensive simulation and measurement features. State space exploration in coloured Petri nets is also often
used for the analysis of internet protocols, for example the datagram congestion control protocol [81] and
the dynamic on-demand routing protocol for mobile ad-hoc networks [82]. PetriDotNet was applied in case
studies using coloured Petri nets (Section 4.1 and Section 4.3), demonstrating its modelling, simulation and
analysis capabilities.
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6. Summary and Conclusion

This paper demonstrated that Petri nets and their variants, together with powerful, state-of-the-art
analysis methods can help the design, development and analysis of various industrial systems. We presented
various use cases, ranging from sensor nets, through transport systems, to cloud scalability, where Petri
nets were found to be appropriate and helpful modelling solutions. With our new and improved analysis
algorithms we were able to push the limits of the current state-of-the-art in formal methods and we could
analyse systems which were too large or too complex to handle before. The use cases also demonstrated that
PetriDotNet integrates the modelling power of Petri nets along with the analysis methods into a powerful
Petri net editor and analysis tool.
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