
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Effective Domain-Specific Formal

Verification Techniques

Ph.D. Dissertation

Ákos Hajdu

Thesis supervisor:
Zoltán Micskei, Ph.D. (BME)

Budapest
2020

Ákos Hajdu
https://hajduakos.github.io

June 2020

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar
Méréstechnika és Információs Rendszerek Tanszék

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudósok körútja 2.

doi: 10.5281/zenodo.3892347

https://hajduakos.github.io
http://doi.org/10.5281/zenodo.3892347

Declaration of own work and references

I, Ákos Hajdu, hereby declare that this dissertation, and all results claimed therein are my
own work, and rely solely on the references given. All segments taken word-by-word, or in
the same meaning from others have been clearly marked as citations and included in the
references.

Nyilatkozat önálló munkáról, hivatkozások átvételéről

Alulírott Hajdu Ákos kijelentem, hogy ezt a doktori értekezést magam készítettem és ab-
ban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint,
vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás
megadásával megjelöltem.

Budapest, 2020.06.14.

Hajdu Ákos

iii

Acknowledgements

This dissertation marks a checkpoint in my career, and I am grateful for so many people being a part
of this incredible journey, helping me develop both professionally and personally.

First of all, I would like to thank my family for their continuous and unconditional support, and
for being by my side during all the highs and lows: my wife1 Dorka, my parents “Anya” and “Apa”,
my grandparents “Mama” and “Papa” and my brother Bálint. Their continuous help and efforts made
me much easier to focus on my research. I am especially grateful to Dorka for all the small things and
for enduring my long times abroad when she was saying “good morning” though it was midnight.

From the professional point of view, I would like to start withmy Ph.D. supervisor, ZoltánMicskei,
who is not only a professional advisor but also a personal mentor for me. I am thankful for his efforts
in steering every aspect of my career, including various soft skills and self-management. There was no
challenge, which could not be tackled with one of his precisely organized tables. I am also grateful to
Dejan Jovanović for being my supervisor during two fruitful internships at SRI International, which
resulted in the third thesis of the dissertation. Discussing with him is always a pleasure: going from
a high-level view all the way to the tiny details, and finally, resolving one issue yields three new
interesting challenges to work on. Furthermore, I am also thankful for my former B.Sc. and M.Sc.
advisors, András Vörös, Tamás Bartha and Tamás Tóth. Their role was invaluable in paving my path
as a young researcher. I am also grateful for the support of professors István Majzik, Dániel Varró and
András Pataricza. Despite being busy, as usual for professors, they are always happy to take some of
their time and help me. I would also like to thank Ákos Kiss (University of Szeged) and Prof. Florian
Zuleger (TU Wien) for their valuable time and constructive feedback. Their initial reviews, questions
and suggestions helped to increase the quality of the dissertation for its final version.

I would like to thank my current and former colleagues (in no particular order) for all the dis-
cussions and collaboration: Vöri, Tomi, Vince, Gábor, Ati, Dani, Marci, Manuel, Sidi, Kristóf, Rebus,
Bence, Dávid, Oszkár, Imre and Laci. I am especially thankful to Gábor for being an infrastructural
and technical helpdesk. Furthermore, I am grateful to everyone at my research group ftsrg, and at our
department MIT for being not only colleagues but also good friends. I am also thankful to the talented
students whom I had the pleasure to work with: Gyula, Bence, Rebus, Dorina, Misi, and many others.

I was honored to work with many outstanding people during various internships, where they
widened my perspective and helped my professional and personal development. Amongmany others,
I would like to thank Zoltán Theisz (evopro), Bertrand Bellenot, Axel Naumann, the ROOT team, and
the people of PH-SFT (CERN), Dejan Jovanović, Michael Emmi, Gabriela Ciocarlie and my former
colleagues at CSL (SRI International) and Prof. Dániel Varró (McGill University).

Finally, I would like to thank all my friends for all the days when they picked me up when I was in
pieces; for all the nights where we made memories that will never fade; for reminding me that success
is my only option; for keeping me up above in my head instead of going under; and for the fact that
in the end, every place felt like somewhere I belong: the wolfpack, the ski crew (a.k.a the real risk
takers), the kings of VIK, skaters from EGH, the Schuman squad at CERN, my fellow SRI interns, the
Long Islanders from NYC, the basketball and hike gang from Marktoberdorf, and all the people from
any corner of the world whom I’ve shared some cool story with. Without listing dozens of names, I’m
sure you know that I’m talking about you, and I want you all to know how thankful I am. I hope that
we’ll meet again soon for more adventures. I am also grateful to Prof. Berkes, Reni, Kata and the rest
of the medical staff for putting me together so that I can continue my journey. Credits also go to Fifi,
the guinea pig and Pogi, the rabbit, for bringing fluffiness and joy even to the hardest working days.

1Technically, she was affiliated with me as my girlfriend during the work described in this dissertation.

v

Support. The research described in the dissertation and the publication of its results received fi-
nancial support from various grants, awards, scholarships, and institutions: the MTA-BME Lendület
Cyber-Physical Systems Research Group, the National Scholarship for Young Talents (NTP-NFTÖ-16
and NTP-NFTÖ-18), the R5-COP project, the European Organization for Nuclear Research (CERN),
the DisCoTec 2016 student grant, the FMCAD 2017 student travel award, McGill University, SRI Inter-
national, the Oberwolfach Research Institute for Mathematics (MFO), the Marktoberdorf 2016 grant,
IncQuery Labs Ltd., and the Schnell László Foundation.

vi

Summary

Formal verification techniques allow rigorous reasoning about the operation of computer systems and
programs. With a sound and complete mathematical basis, it is both possible to show the presence
of certain kinds of errors and to prove their absence. Formal methods are often applied in critical
domains (e.g. industrial controllers) to increase quality and trust in their correct operation. How-
ever, most of the interesting questions to be analyzed are computationally complex or undecidable in
general. Therefore, verification approaches in different problem domains usually put more emphasis
on different properties of the analysis to achieve a reasonable trade-off. Such properties include (1)
expressive power (2) efficiency, and (3) the amount of conclusive answers. This work addresses chal-
lenges related to the properties mentioned above in three different problem domains using different
approaches to make verification effective.

Thesis 1 targets concurrent and asynchronous systems by modeling them with Petri nets and
checking the reachability of a given state. We study an existing algorithm that uses an efficient struc-
tural over-approximation. However, the expressive power is limited to simple reachability properties
and the algorithm can easily give inconclusive answers due to its iteration strategy. We lift the expres-
sive power of the algorithm by handling a generalized version of reachability and supporting Petri
nets extended with inhibitor arcs. We increase the number of conclusive answers by the algorithm
via a new iteration approach on invariants and a hybrid search strategy.

Thesis 2 targets embedded software code by modeling them with control-flow automata and
checking the reachability of a distinguished error location. We study abstraction-refinement-based
model checking where efficiency is still a significant limitation due to the complexity of the programs
and the rich domains of their variables. We propose various efficient strategies for both abstraction
and refinement. For abstraction, we extend the explicit-value analysis with limited successor enumer-
ation, and we adapt structural information from the program to guide the search more efficiently. For
refinement, we develop a backward-search based interpolation strategy and an approach that uses
multiple counterexamples for a faster convergence to the appropriate level of abstraction.

Thesis 3 targets decentralized, blockchain-based systems by translating contracts (programs run-
ning on such systems) to an intermediate verification language. We adapt existing modular specifica-
tion constructs to this context and also propose domain-specific properties. This provides a flexible
and expressive approach to specify high-level, functional properties of contracts. We define a transla-
tion from contracts to the Boogie intermediate verification language, and leverage existing modular
verification approaches. Furthermore, we develop a modular encoding of arithmetic that can capture
operations precisely and efficiently over large bit-widths that are common in this domain.

All contributions have been implemented in practical tools and are available publicly. We also
evaluate our contributions on various synthetic and real-world examples to prove their applicability.
Results show that our contributions successfully address the targeted challenges and provide effective
verification approaches in general.

vii

sszefoglaló

A formális verifikáción alapuló módszerek lehetővé teszik különböző számítógépes rendszerek
és programok precíz vizsgálatát. A matematikai alapoknak köszönhetően képesek bizonyos típusú
hibák megléte mellett azok hiányát is bizonyítottan igazolni. Formális módszereket gyakran kriti-
kus környezetekben alkalmaznak (pl. ipari vezérlők) annak érdekében, hogy a rendszer minőségét
és megbízhatóságát növeljék. A legtöbb formálisan vizsgálandó kérdés azonban általános esetben túl
nagy számításigénnyel rendelkezik vagy elméletileg is eldönthetetlen probléma. Ennek következté-
ben a verifikációs módszerek különböző területeken az analízis különböző tulajdonságaira fektetnek
nagyobb hangsúlyt annak érdekében, hogy megfelelő kompromisszumot biztosítsanak. Ilyen tulaj-
donság többek között a (1) kifejezőerő (2) a hatékonyság és (3) a megválaszolt problémák száma. Je-
len disszertáció az előbb felsorolt tulajdonságokhoz kapcsolódó kihívásokat vizsgál három különböző
problématerületen, különböző algoritmusok segítségével annak érdekében, hogy jól alkalmazható ve-
rifikációs módszereket biztosítson.

Az 1. tézis párhuzamos és aszinkron rendszereket modellez Petri-hálók segítségével és egy adott
rendszerállapot elérhetőségét ellenőrzi. A tézisben egy meglévő algoritmust vizsgálunk, amely egy
hatékony, strukturális felülbecslést alkalmaz. Az algoritmus kifejezőereje azonban egyszerű elérhető-
ségi kérdésekre korlátozódik, továbbá az iterációs stratégiája miatt számos problémát nem tud meg-
válaszolni. Jelen munkában kiegészítjük az algoritmust úgy, hogy az elérhetőség egy általánosított
változatát és tiltó éles Petri-hálókat is támogasson, ezáltal emelve a kifejezőerejét. Emellett a meg-
válaszolt problémák körét is kiterjesztjük egy invariánsok feletti új iterációs stratégia és egy hibrid
keresési módszer segítségével.

A 2. tézis beágyazott programkódokat modellez vezérlési folyam automaták segítségével és egy
kitüntetett hibaállapot elérhetőségét vizsgálja. A tézisben egy absztrakciófinomítás-alapú algoritmust
vizsgálunk, amely esetén a hatékonyság továbbra is egy korlátozó tényező a programok komplexitá-
sa és a változóik gazdag értékkészlete miatt. Jelen munkában számos hatékony stratégiát javasolunk
mind az absztrakció, mind a finomítás lépéseire. Az absztrakció esetén az explicit-érték analízist ki-
egészítjük a rákövetkező állapotok korlátolt felsorolásával és a programból származó strukturális in-
formációkat használunk fel a keresés hatékonyabb működése érdekében. A finomításhoz kidolgozunk
egy hátrafelé keresésen alapuló interpolációs stratégiát és egy olyan módszert, amely több ellenpél-
da alapján képes finomítani. Ezáltal gyorsabb konvergenciát érünk el a megfelelő absztrakciós szint
irányába.

A 3. tézis decentralizált, blokklánc-alapú rendszereket vizsgál azáltal, hogy a rajtuk futó progra-
mokat – úgynevezett szerződéseket – egy köztes verifikációs nyelvre képezi le. A meglévő modulá-
ris specifikációs konstrukciók mellé blokklánc-specifikus tulajdonságokat is definiálunk. Ezáltal egy
rugalmas és nagy kifejezőerejű módszert biztosítunk a szerződések magasszintű, funkcionális tulaj-
donságainak definiálására. A szerződésekről egy leképezést javasolunk a Boogie köztes verifikációs
nyelvre és meglévő moduláris verifikációs módszereket használunk az ellenőrzésükre. Emellett kidol-
gozzuk egy olyan – maradékos osztáson alapuló – elkódolását az aritmetikai műveleteknek amely
precízen és hatékonyan tudja kezelni az ezen a területen gyakori nagy bitszélességű változókat is.

A disszertáció összes kontribúciója szabadon elérhető és praktikus eszközökben került implemen-
tálásra. A kontribúciók alkalmazhatóságát számos mesterséges és valódi példán történő kiértékeléssel
demonstráljuk. Az eredmények azt mutatják, hogy a kontribúcióink sikeresen célozzák meg a kitűzött
kihívásokat és jól alkalmazható verifikációs módszereket biztosítanak.

viii

List of Abbreviations

Abbreviation Introduced in Description

AIGER Sec. 2.3 And-inverter graph format
ARG Def. 2.6 Abstract reachability graph
AST Sec. 3.3 Abstract syntax tree
BDD Binary decision diagram
BFS Breadth-first search
CEGAR Sec. 1.1.4 and 2.1.3 Counterexample-guided abstraction refinement
CFA Def. 2.3 Control-flow automaton
DFS Depth-first search
EVM Sec. 3.1.2 Ethereum virtual machine
FOL Sec. 2.1.1 First-order logic
HWMCC [Cab+16] Hardware Model Checking Competition
ILP Sec. 1.1.3 Integer linear programming
IVL Intermediate verification language
LP Sec. 1.1.3 Linear programming
LTS Sec. 2.3 Labeled transition system
MCC [Kor+12] Model Checking Contest
PLC Programmable logic controller
PN Def. 1.1 Petri net
PS Def. 1.5 Partial solution
RQ Research question
SAT Def. 2.1 Boolean satisfiability problem
SCC Sec. 1.1.4.7 Strongly connected component
SMT Def. 2.2 Satisfiability modulo theories
STS Sec. 2.3 Symbolic transition system
SV-COMP [Bey17] Competition on Software Verification
TC Sec. 3.2.2.7 Type condition
VC Verification condition
XTA Sec. 2.3 Extended timed automata

ix

Contents

Introduction 1

Properties and Challenges . 2
Problem Domains and Contributions . 4

Concurrent and Asynchronous Systems . 5
Embedded Software Code . 6
Blockchain-Based Decentralized Systems . 8

1 Extensions to the CEGAR Approach on Petri Nets 9

1.1 Background . 9
1.1.1 Petri Nets . 9
1.1.2 Reachability Problem . 11
1.1.3 Linear Programming . 12
1.1.4 CEGAR for Petri Nets . 13

1.2 Extensions . 25
1.2.1 Reachability of Predicates . 25
1.2.2 Inhibitor Arcs . 26
1.2.3 Distant Invariants . 28
1.2.4 Hybrid Search . 34

1.3 Implementation . 36
1.4 Evaluation . 37

1.4.1 RQ1: Scalability . 37
1.4.2 RQ2: Comparison to Other Tools and Algorithms 40
1.4.3 RQ3: Comparison of Search Strategies . 40

1.5 Related Work . 42
1.6 Summary and Future Work . 42

2 Efficient Strategies for CEGAR-based Software Model Checking 45

2.1 Background . 45
2.1.1 Mathematical Logic . 45
2.1.2 Control-Flow Automata . 46
2.1.3 Counterexample-Guided Abstraction Refinement (CEGAR) 47

2.2 Algorithmic Improvements . 55
2.2.1 Configurable Explicit Domain . 55

xi

2.2.2 Error Location-Based Search . 58
2.2.3 Backward Binary Interpolation . 60
2.2.4 Multiple Refinements for a Counterexample 61

2.3 Implementation . 63
2.4 Evaluation . 65

2.4.1 Experiment Planning . 65
2.4.2 Results and Analysis . 70
2.4.3 Comparison to Other Tools . 76

2.5 Related Work . 78
2.6 Summary and Future Work . 80

3 Modular Specification and Verification of Smart Contracts 83

3.1 Background . 83
3.1.1 Blockchain-Based Systems . 83
3.1.2 Ethereum . 84
3.1.3 Solidity . 85
3.1.4 Boogie IVL . 87
3.1.5 Modular Verification . 89

3.2 Modular Specification and Verification for Solidity . 89
3.2.1 Specification Annotations . 90
3.2.2 Translation . 92

3.3 Implementation . 99
3.4 Evaluation . 100

3.4.1 RQ1: Language Coverage . 101
3.4.2 RQ2: Unannotated Contracts . 102
3.4.3 RQ3: Annotated Contracts . 104

3.5 Related Work . 106
3.6 Summary and Future Work . 107

Summary of the Research Results 109

Thesis 1: Extensions to the CEGAR Approach on Petri Nets 109
Thesis 2: Efficient Strategies for CEGAR-based Software Model Checking 110
Thesis 3: Modular Specification and Verification of Smart Contracts 111

Publications 113

Publications Linked to the Theses . 113
Additional Publications (Not Linked to Theses) . 114
Additional Work . 115

Bibliography 117

xii

Introduction

“Computer science has become pervasive in production, transportation, infrastructure, health
care, science, finance, administration, defense, and entertainment. Programs are the most
complex machines built by humans, and have huge responsibilities for human safety, secu-
rity, health, and well-being. These developments have exacerbated the challenges and, at the
same time, dramatically increased the need for correct programs and, hence, for computer-
aided verification.” [Cla+18]

As Clarke et al. states [Cla+18], our need for trust and reliance on correctly operating computer
systems and programs is rapidly increasing. Such systems are often found in critical environments,
where an error can lead to severe damage (e.g. industrial controllers) or financial consequences (e.g.
asset management). While there is a wide variety of verification methods ranging from simple com-
piler checks to testing and runtime monitoring, formal techniques are also gaining traction in critical
domains. Formal verification techniques have a sound mathematical basis and can both show the
presence or prove the absence of certain kinds of errors. Rigorous reasoning about the operation of
a computer system or program traces back several decades to seminal works of McCarty [McC62],
Floyd [Flo67], Hoare [Hoa69] and Dijkstra [Dij76]. Despite early results proving that most of the in-
teresting problems (e.g. termination) are theoretically undecidable [Tur36; Chu36; Ric53], there has
been a great interest in developing approaches that can be effectively applied for practical cases.

Automated formal verification2 [DKW08] gained a boost when model checking [Cla+18] was in-
troduced, which examines whether a formal model (representation) of the system meets a formally
specified property by analyzing all possible states and transitions (i.e. the state space) of the model.
In this dissertation, we are addressing discrete systems, where the behavior of the system can be
expressed in terms of discrete states and transitions. Early works explicitly enumerated the state
space [CE82; QS82], which rarely scaled to programs and systems of a practical size. Nevertheless,
the promise of formal correctness guarantees has spawned a great interest, and a wide variety of ap-
proaches have been developed. Symbolic methods [Bur+90] can encode the state space in a more com-
pact way using decision diagrams [Bry86]. Partial order reduction techniques [Val91; God91; Pel93]
exploit independence between transitions to traverse only a subset of the state space. Bounded model
checking [Bie+99] exploits the advances in SAT solving (as demonstrated by competitions [Jär+12])
to find errors up to a given depth by encoding paths as formulas. Later, k-induction [SSS00] gener-
alized it to be able to prove correctness as well (even for infinite state spaces [MRS03]). Abstraction-

2This work focuses on automated techniques, i.e. we are not considering semi-automated theorem provers [HUW14].

1

Introduction

and abstraction-refinement-based techniques [CGL94; Cla+03] allow compact representation of (po-
tentially infinite) state spaces using different abstract domains (e.g. predicates [GS97] or variable vis-
ibility [CGS04]). Modular specification and verification [Mül02] checks modules independently from
others by only relying on their specification. IC3 [Bra11] iteratively strengthens an inductive invari-
ant by relying on SAT solvers. However, despite the advances, there are open questions that have
not yet been addressed to a full extent, and each new application or problem domain spawns new
challenges. This dissertation targets such challenges in order to make verification more effective.

Properties and Challenges

From the theoretical point of view, two widely studied properties of formal verification are soundness
and completeness [JM09; Bey12; Mey19] as illustrated in Figure 1. A system or program might behave
desirably (with respect to a property) or might have violating behaviors. When formal verification is
applied, it can either result in a pass (property holds) or a reject (property is violated).

Soundness. An analysis is called sound if it does not miss any violations to the property. Missed
violations (also called false negatives) are critical because they lead to a misbelief of a correctly oper-
ating system.

Completeness. Analogously, an analysis is called complete if it only reports real violations of the
property. In most cases, a reported violation (error) is accompanied by a trace leading to the error
that can be reproduced in the original system. Therefore, false alarms (non-real errors) can be ruled
out by simulating the reported trace on the original system. This usually requires manual effort, so
an overwhelming amount of false alarms can make the approach less appealing in practice.

Accepted
desirables

False alarms
(incomplete)

Missed violations
(unsound)

Caught
violations

Desirable
behavior

Violating
behavior

System or
program

Passes Rejects
Formal verification

Figure 1: Illustration of the possible outcomes of verification compared to the real behavior [Mey19].
A sound analysis should not miss violations, while a complete one must not report false alarms.

In the current work, we are not considering soundness and completeness explicitly. The algorithms
and background logics have a soundmathematical basis and have been used in various contexts; many
of them also having formal proofs. Unsound and incomplete behavior is often introduced while trans-
lating the high-level model to themathematical formalism, but translation validation is a research area
on its own and is out of scope for this work. We raise our confidence in soundness and completeness
by evaluating our approaches on various real-life examples and standard benchmarks.

Soundness and completeness are essential properties, but they only apply if verification terminates
with a conclusive answer. In practical settings, usually, a broader set of properties and challenges

2

Properties and Challenges

must be considered (Figure 2), such as the expressive power and efficiency of an approach and the set
of problems on which it can terminate with a conclusive answer.

Conclusive Inconclusive

Terminate with answer Resource
limits
reached

Supported by verification Unsupported
modeling
element

or property

Model and property space

Conclusive answers

Efficiency

Expressive power

Figure 2: Possible outcomes of verification in practice. When verification cannot give a conclusive
answer, it can terminate inconclusively, reach its resource limits or encounter an unsupported feature.

Expressive power. Engineers and programmers usually describe their systems and programs in
some high-level modeling or programming language. High-level system models and properties are
translated through a series of transformations to low-level mathematical formalisms (e.g. automata)
and properties (e.g. temporal logic) on which verification algorithms operate. The expressive power of
a verification approach is determined by the supported modeling formalism and property. Note that
the expressive power of the low-level formalism and property also determines the set of high-level
modeling elements and specification constructs that can be used. For example, to verify a protocol with
unbounded communication channels, the algorithm should be able to handle infinite state spaces.

Efficiency. In practical applications, formal verification is limited by various resources such as CPU
time or memory consumption. In the context of this dissertation, we consider a formal verification
approach efficient if it allows scalable reasoning on systems of practical size and complexity. It is
hard to define what “scalable” means explicitly because it also depends on the application domain. An
interactive verifier built into an IDE should not take longer than a few seconds. Verification integrated
into CI environments can run up to a few minutes [Cal+15; Cho+20]. Competitions [Bey17; Cab+16;
Amp+19] usually allow larger execution times (15–60 minutes), and in some domains, it might also
be acceptable to run analyses overnight for multiple hours.3

Conclusive answers. Algorithms might also encounter some undecidable case or unsupported
subclass where they stop and report an inconclusive answer. This can happen, for example, when
an approach over- or under-approximates the state space and can only prove or falsify the property
but not both. A typical example is boundedmodel checking [Bie+99], which terminates with an incon-
clusive result if the bound is reached without finding a violation. Terminating with an inconclusive
result is better than exhausting resources or reporting a wrong answer, but ideally, the number of
such cases should also be minimized.

Trade-offs. It is hard (or sometimes even theoretically impossible) to achieve all the above prop-
erties to a full extent in a general setting [JM09]. For example, lifting the expressive power of the
algorithm might make the problem theoretically undecidable, and thus the algorithm cannot be con-
clusive for all cases. Also, efficient reasoning often involves abstractions, which can introduce falsely
reported errors, i.e. incompleteness.

3Based on personal communication with Dániel Darvas, the developer of a PLC verification tool [DFB15] at CERN.

3

Introduction

Challenges. In this dissertation, we focus on the following three challenges.
1. Expressive power : How canwe support expressing and checking high-level modeling formalisms

and functional properties?
2. Efficiency: How can we increase the efficiency of an approach to be able to terminate for a

broader set of system models and programs of practical size?
3. Conclusive answers: How canwe increase the set of problemswhere verification terminates with

a conclusive answer?

Objective. The objective of the dissertation is to achieve a trade-off that is effective in practice by
balancing the focus between the challenges in the different problem domains.

Problem Domains and Contributions

In this dissertation, we target effective verification in three different problem domains using different
modeling formalisms and verification approaches:

1. concurrent and asynchronous systems (Thesis 1),
2. embedded software code (Thesis 2) and
3. blockchain-based decentralized systems (Thesis 3).

An overview of the contributions can be seen in Figure 3. Systems and programs in each domain
are usually designed or written in some higher level language that is suitable for engineers and de-
velopers. This representation is first translated into a formal model and a property. A verification
algorithm then checks whether the model satisfies the property by systematically exploring its be-
havior. During this process, the algorithm translates the validity of the property into formulas and
equations, called verification conditions (VCs), and relies on some background logic to solve them. A
filled background highlights my own contributions, with the corresponding subtheses numbered in
ellipses (also referenced later in the text). As discussed previously, each domain puts more empha-
sis on different challenges. These challenges – namely expressive power, efficiency, and conclusive
answers – are summarized in Figure 4.

Concurrent/asynchronous

Petri nets
Inhib. arcs

Reachability
Predicates

State equation
and CEGAR

Integer linear programming

1.11.2

1.3
1.4

Embedded software

Control-flow
automata

Reachability
of location

Predicates, explicit values
and CEGAR

Satisfiability modulo theories

2.1
2.2

2.3
2.4

Decentralized/blockchain

Boogie IVL Modular
specification

Modular program
verification

Satisfiability modulo theories

3.3 3.1

3.2

3.4
Domain

Translation

Formal model
and property

Algorithm

VC generation

Background logic

Thesis 1 Thesis 2 Thesis 3

Figure 3: Overview of the problem domains and the verification approaches used in each thesis. Own
contributions are denoted with a filled background.

4

Problem Domains and Contributions

Thesis 1 Thesis 2 Thesis 3

Expressive power 1.1 1.2 3.1 3.2

Efficiency 2.1 2.2 2.3 2.4 3.3 3.4

Conclusive answers 1.3 1.4

Figure 4: Overview of the challenges addressed by each thesis.

Concurrent and Asynchronous Systems

Concurrent systems consist of multiple components interacting together, often in an asynchronous
way, to achieve some common goal. Some examples include mutual exclusion protocols, scheduling
processes, and manufacturing systems. The main focus of verification, in this case, is usually on the
communication, the interactions, and the protocols between the participants. However, due to the high
number of possible interleavings between the individual executions, the state space of these systems
can often grow at an exponential (or even higher) rate with the number of participants. Furthermore,
unbounded protocols can even yield an infinite state space.

Petri nets [Mur89] offer a compact representation, providing both structural and dynamical anal-
ysis. A Petri net is a directed bipartite graph with places and transitions. Places are marked with a
number of tokens, describing the current state of the modeled system. Transitions change the dis-
tribution of tokens (i.e. the marking) by removing and producing tokens in connected places. Many
interesting properties can be formulated by the so-called reachability problem [Mur89], i.e. deciding if
a given state (marking) is reachable from the initial state of the net. Reachability is decidable [May81;
Kos82], but has at least a non-elementary complexity [Cze+19].

There has been an extensive body of work on efficient approaches for solving Petri net reach-
ability [Amp+19]. One appealing algorithm [WW11] uses the state equation of Petri nets to over-
approximate the reachability problem. The state equation is a structural analysis technique based on
integer linear programming (ILP) [Sch86]. A notable feature of the state equation is that – as a struc-
tural technique – it is independent of the size of the state space. Thus, it is capable of handling very
large or even infinite state spaces efficiently. However, the feasibility of the state equation is only a
necessary, but not a sufficient condition for reachability. Therefore, if there is no solution to the state
equation, the target state is not reachable. Otherwise, the solution must be checked (simulated) in the
Petri net for feasibility. In the case of an infeasible solution, the state equation is extended with ad-
ditional constraints to become a more precise over-approximation and to obtain a different solution.
The process is repeated until the state equation becomes infeasible, or a feasible solution is found.
This can also be seen as an application of the so-called counterexample-guided abstraction refinement
(CEGAR) approach [Cla+03] to Petri nets.

Thesis 1 objectives. While the algorithm has proven its efficiency at the Model Checking Con-
test [Kor+12], its expressive power was limited to basic Petri net reachability, and no discussion
was available on the problems on which it gives a conclusive answer. The main objectives of this
research are to examine the problems on which the algorithm gives a conclusive answer and to lift
its expressive power to extended Petri nets and more general properties.

5

Introduction

Thesis 1: Extensions to the CEGAR Approach on Petri Nets

The authors only published a partial proof on the soundness of their algorithm and did not examine
the set of problems on which it gives a conclusive answer [WW11]. In our initial work, we proved
that one of the heuristics in their algorithm is unsound, i.e. a reachable state might be determined
as unreachable [c4], and we also suggested a fix [j1]. We also showed a whole subclass of Petri nets
for which their algorithm terminated with an inconclusive answer [c4]. In this thesis, we define the
concept of distant invariants and propose a new iteration strategy 1.3 , which extends the class of
reachability problems that could be analyzed [c5]. Despite the extension, the improved algorithm can
still give inconclusive answers, but we provide theoretical investigations on its limitations [c5].

Another limitation of the original algorithm is that it only works for Petri nets without any ex-
tensions. One particularly interesting extension is the inhibitor arc construct, which allows testing
the lack of tokens at a place, lifting the expressive power of Petri nets to be Turing complete [Pet81].
We extend the constraint generation heuristic of the original algorithm to be able to handle inhibitor
arcs 1.2 [c4]. Although reachability with inhibitor arcs is undecidable in general [Chr99], we present
examples where our extension works.

To further improve the expressive power of the analysis, we extend the original algorithm to
be able to handle reachability of predicates 1.1 [c4]. In this generalized version of reachability, one
can define an arbitrary linear condition (predicate) over the state to be reached. This improves the
expressive power of the algorithm as, for example, it allows to specify the state to be reached partially
(e.g. one component in a larger system).

Although the algorithm approximates the state space with equations, the solution space still has
to be traversed. We experiment with breadth- and depth-first search strategies and propose a hybrid
search strategy 1.4 (based on a new partial order between solutions) to combine their strengths [c5].

We implemented the original algorithm and its extensions in the PetriDotNet modeling and
analysis tool [c7], which is freely available4 and used in education and research projects at the Bu-
dapest University of Technology and Economics. We also evaluate the new contributions on roughly
40 input models (from the Model Checking Contest [Kor+12] and some custommodels). Results show
that the new algorithms could outperform existing tools and approaches on various inputs in terms
of conclusive answers and expressive power [c5].

Embedded Software Code

Safety critical software usually operates in embedded systems or controllers. Such programs are of-
ten written in C or a similar lower level language with a restricted set of elements and constructs.
Some examples include industrial controller codes and event-driven systems. A widely used formal
representation for such programs is the control-flow automaton (CFA) [BHT07]. A CFA is a graph-
based formalism where nodes correspond to program locations and edges capture control-flow with
operations over the program variables. Many interesting properties can be formalized by checking if a
distinguished error location can be reached in the CFA. Examples include failing assertions, indexing
out-of-bounds, division by zero, and so on [Bey15].

However, a significant challenge in software model checking is the large state space implied by
data variables with rich domains (e.g. integers and arrays). This issue is often addressed by abstrac-
tion.Counterexample-guided abstraction refinement (CEGAR) [Cla+03] is an automated verification ap-
proach that works by iteratively constructing and refining abstractions for the system. Many variants
of CEGAR have been developed over the years as different strategies are more suitable for different

4http://petridotnet.inf.mit.bme.hu/en/

6

http://petridotnet.inf.mit.bme.hu/en/

Problem Domains and Contributions

kinds of programs. A generic CEGAR approach consists of two main parts [j3]. First, the abstrac-
tion phase builds an abstract reachability graph (ARG) using an initial (usually coarse) precision. The
ARG represents the abstract state space under some abstract domain, such as explicit values [BL13]
or predicates [GS97]. Explicit values only track a subset of the system variables, whereas predicates
keep track of different facts and relationships between the variables using logical formulas. The ARG
is an over-approximation of the original state space, therefore if the error location cannot be reached,
the original system is also correct. Otherwise, an abstract counterexample (a trace leading to the error
location) exists. The refinement phase starts by checking the feasibility of this counterexample in the
original system. If it is feasible, the system is incorrect. Otherwise, the precision of the abstraction is
refined by inferring new variables or facts to be tracked [j3], and the ARG is pruned to exclude the
spurious counterexample. In the next iteration, abstraction can continue with the refined precision,
and these steps are repeated until the error location can be proved to be unreachable or a feasible
counterexample is found. The CEGAR algorithm relies on satisfiability modulo theories (SMT) [BT18;
BHM09] in the background to build the ARG and to refine the precision.

Thesis 2 objectives. Despite applying abstraction and CEGAR, scalability is still a major lim-
iting factor in software model checking. Successful verification usually requires the combina-
tion of multiple approaches [BLW15a; BDW15; JD16] or a portfolio of different methods [Tul+14;
Dem+17; Dar+18; GD19; RW19]. The main objective of this research is to improve the efficiency
of the state of the art by developing new strategies for both abstraction and refinement by novel
extensions and combinations of existing approaches.

Thesis 2: Efficient Strategies for CEGAR-based Software Model Checking

In our prior work, we defined a generic CEGAR framework for programs described by transition
systems to be able to combine different approaches [c6]. This framework successfully facilitated the
use of predicates and explicit values and incorporated different interpolation strategies. Later, we
generalized this framework to also support programs described by control-flow automata [c9].

This leads us to this thesis, where we develop various improvements to both the abstraction and
the refinement phases of CEGAR [j3]. For abstraction, we define an extension for the explicit-value
domain that can perform a limited enumeration 2.1 of possible successor states when an expression
cannot be precisely evaluated (due to the nature of abstraction). While this has a minimal perfor-
mance penalty, it can be compensated later by the increased precision. We also propose a new search
strategy 2.2 in the abstract state space that uses structural information from the program about the
error location to guide the search more efficiently towards counterexamples. This approach can also
help when checking correct programs because CEGAR encounters (abstract) counterexamples during
intermediate steps.

For refinement, we develop a backward search-based interpolation strategy 2.3 to track the reason
of infeasibility of abstract counterexamples back to the earliest point in the program. We also intro-
duce an approach that collects multiple counterexamples 2.4 during abstraction and refines them at
once, allowing information to be exchanged between the different counterexamples. Both contribu-
tions aim to yield a faster convergence to the appropriate precision.

We implemented the CEGAR algorithm and its improvements in the open-source5 Theta verifi-
cation framework [c9]. We also evaluate the new contributions on 445 input models from the Com-
petition on Software Verification [Bey15] and 90 input PLC programs from CERN [Fer+15]. Results
highlight various categories of inputs where the new contributions improved efficiency remarkably.

5https://github.com/FTSRG/theta

7

https://github.com/FTSRG/theta

Introduction

Blockchain-Based Decentralized Systems

Blockchain-based distributed ledgers are aiming to replace centralized solutions that require a trusted
intermediary (e.g. banks). Early applications of the blockchain, such as the Bitcoin [Nak08], focused
on implementing cryptocurrencies, i.e. digital money. Their success generated enormous attention,
and later more general solutions emerged, for example, Ethereum [Woo17]. In the general setting,
the ledger allows the deployment of programs (so-called smart contracts [Sza94]) that can store an
arbitrary state (as data) on the blockchain and enablemanipulating their data via transactions [AW18].
However, high-profile bugs and vulnerabilities highlighted that smart contracts are often prone to
critical errors [ABC17; DMH17; Dat18]. Although the code of the contracts is usually small, it often
carries a significant amount of value per line (e.g. by managing assets or tokens) [OHJ20].

While there have been various works on verifying smart contracts with static analysis [Tsa+18;
Luu+16; Mue18; FGG19] and theorem proving [Hil+18; Hir17], not much effort had been put into
the automated verification of high-level, functional properties of contracts. Due to the transactional
behavior of the blockchain, modular specification and verification [Mül02] is an appealing approach
for checking smart contracts. Boogie [DL05] is an intermediate verification language (IVL), which
is supported by different backends, including a modular verification engine [Bar+06]. The units of
verification in Boogie are the procedures, which can be annotated with specification expressions such
as pre- and postconditions. Modular program verification checks if the specification of each procedure
is satisfied by assuming the related modules’ specifications to hold. This is achieved by encoding each
procedure as SMT formulas (verification conditions) and discharging them with SMT solvers.

Thesis 3 objectives. The main objective of this research is to develop an expressive and efficient
modular specification and verification approach for checking high-level functional properties of
smart contracts by translating them to the Boogie IVL.

Thesis 3: Modular Specification and Verification of Smart Contracts

In this thesis we define a modular specification and verification approach for smart contracts written
in the Solidity language [Eth18]. We adapt various existing specification constructs 3.1 (such as asser-
tions, pre- and postconditions and invariants) to the context of smart contracts [c10]. Such properties
can be specified in the code itself using annotations that extend the Solidity language. We also propose
some domain specific properties 3.2 (e.g. sums of balances) that are not expressible directly in Solidity
or the verification logic [c10].

We define a translation 3.3 from annotated Solidity contracts to the Boogie IVL [c10]. This allows
us to discharge the verification conditions automatically by leveraging modular verification and SMT
solvers. While a significant part of the translation is similar to standard program verification, there
are various challenging blockchain-specific details that are not common in general programming
languages. We develop an encoding of arithmetic 3.4 using modulo operations that captures the bit-
precise semantics of execution, while also being scalable to practical bit-widths (256 bits) even with
nonlinear arithmetic expressions [c10]. This opens up the possibility to check for integer under- and
overflows without introducing an overwhelming amount of false alarms.

We implemented the translation in the open-source6 tool solc-verify [c10] based on the Solidity
compiler and the Boogie verifier. We evaluate our approach on several annotated and unannotated
real-life examples by finding bugs, fixing them, and proving correctness with minimal user effort.

6https://github.com/SRI-CSL/solidity

8

https://github.com/SRI-CSL/solidity

Chapter1

Extensions to the CEGAR Approach on

Petri Nets

This chapter presents our extensions to the CEGAR approach on the reachability analysis of Petri nets.
We start by introducing the basis of our work: Petri nets, the reachability problem, and the CEGAR
algorithm (Section 1.1). Then, we propose our contributions: handling reachability of predicates and
inhibitor arcs, extending the set of decidable problemswith so-called distant invariants, and our hybrid
search strategy (Section 1.2). We briefly discuss the implementation of the algorithm in PetriDotNet
(Section 1.3) and perform an experimental evaluation (Section 1.4). Then, we put our work in context
with related literature (Section 1.5). Finally, we summarize the thesis, highlight the contributions, and
suggest future directions (Section 1.6).

1.1 Background

In this section, we introduce the theoretical background of our work. First, we present Petri nets
(Section 1.1.1) and their reachability problem (Section 1.1.2). Then we introduce linear programming
(Section 1.1.3) and describe a CEGAR-based algorithm for reachability analysis (Section 1.1.4).

1.1.1 Petri Nets

Petri nets [Mur89] – invented by C. A. Petri [Pet62] – are graph-based models for concurrent and
asynchronous systems, providing both structural and dynamical analysis techniques.

Definition 1.1 (Petri net). A discrete Petri net is a tuple PN = (P, T,E,W), where
• P = {p0, p1, . . . , pk} is the finite set of places,
• T = {t0, t1, . . . , tn} is the finite set of transitions,
• E ⊆ (P × T) ∪ (T × P) is the set of arcs and
• W : E 7→ Z+ is the weight function assigning weights w−(pj , ti) to the arc (pj , ti) ∈ E
and w+(pj , ti) to the arc (ti, pj) ∈ E.

The state of the Petri net is described by the marking, which is a mappingm : P 7→ N. A place p
is said to contain k tokens in a markingm ifm(p) = k. The initial marking is denoted bym0.

In the graphical representation of a Petri net, places are denoted by circles, transitions by rectan-
gles, and arcs by arrows. If the weight of an arc is one, it is usually not labeled. The token distribution
is denoted by numbers or dots inside the places. An example can be seen in Figure 1.1.

9

1. Extensions to the CEGAR Approach on Petri Nets

Dynamic behavior. A transition t ∈ T is enabled in a markingm, ifm(pj) ≥ w−(pj , t) holds for
each pj ∈ P with (pj , t) ∈ E. An enabled transition t can fire, consuming w−(pj , t) tokens from
places pj ∈ P with (pj , t) ∈ E and producing w+(pj , t) tokens in places pj ∈ P with (t, pj) ∈ E.
The firing of a transition t from a markingm is denoted bym[t⟩m′ wherem′ is the marking obtained
after firing t. Formally, m′(p) = m(p) + w+(p, t) − w−(p, t) for each p ∈ P (where w+ and w− is
assumed to be 0 if there is no arc).

A word σ = t1t2 . . . tn ∈ T ∗ is a firing sequence. A firing sequence is realizable in a marking m
and leads to m′ (denoted by m[σ⟩m′), if m[t1⟩ . . . [tn⟩m′. The Parikh image of a firing sequence σ is
a vector ℘(σ) : T 7→ N, where ℘(σ)(ti) is the number of the occurrences of ti in σ. The empty firing
sequence is denoted by ε.

Example. A simple Petri net modeling a chemical process can be seen in Figure 1.1. The net has three
places (H2, O2, H2O) and two transitions (t0, t1). Figure 1.1a shows the initial marking, where only t0
is enabled. If t0 fires, the marking seen in Figure 1.1b is reached, where both t0 and t1 are enabled. If now
t1 fires, the initial marking is reached. Otherwise, if t0 fires again, the marking in Figure 1.1c is reached
where now only t1 is enabled.

H2

O2

H2Ot0

t1
2

2

2
2

(a) Initial marking.

H2

O2

H2Ot0

t1
2

2

2
2

(b) Marking after firing t0.

H2

O2

H2Ot0

t1
2

2

2
2

(c) Marking after firing t0 twice.

Figure 1.1: Example Petri net modeling a chemical process (based on an example in [Mur89]).

Inhibitor arcs. Petri nets can be extended with inhibitor arcs to become a tuple PNI = (PN , I),
where I ⊆ (P × T) is the set of inhibitor arcs. There is an extra condition for a transition ti ∈ T
with inhibitor arcs to be enabled: for each pj ∈ P , if (pj , ti) ∈ I , then m(pj) = 0 must hold. With
the ability to test for emptiness, Petri nets extended with inhibitor arcs are Turing complete [Pet81],
which also puts a limitation on available analysis methods [Bus02].

Example. An example net containing inhibitor arcs can be seen in Figure 1.2. Figure 1.2a shows the
initial marking, where t0 is disabled by the inhibitor arc connecting p0 to t0. After firing t1, p0 has zero
tokens (Figure 1.2b), so t0 can now fire. The marking in Figure 1.2c is reached after firing t0.

p2

p1

p0 t0t1

(a) Initial marking.

p2

p1

p0 t0t1

(b) Marking after firing t1.

p2

p1

p0 t0t1

(c) Marking after firing t0.

Figure 1.2: Example net illustrating transition firings with inhibitor arcs.

10

1.1. Background

1.1.2 Reachability Problem

A marking m′ is reachable from m if a realizable firing sequence σ ∈ T ∗ exists for which m[σ⟩m′

holds. The set of all reachable markings from the initial markingm0 of a Petri net PN is denoted by
R(PN ,m0).

Definition 1.2 (Reachability problem). The reachability problem of Petri nets is to decide if
m′ ∈ R(PN ,m0) holds for a given markingm′.

Reachability analysis aims to solve the reachability problem by finding a realizable firing sequence
m0[σ⟩m′. The reachability problem is decidable [May81; Kos82], but its complexity is not precisely
known yet. It was proven to be at least EXPSPACE-hard [Lip76] in 1976, and this lower bound was
just recently lifted to be non-elementary [Cze+19]. An upper bound was first found in 2015 [LS15] and
was recently improved to be Ackermannian [LS19]. Using inhibitor arcs, the reachability problem, in
general, is undecidable [Chr99].

The reachability problem can be generalized to predicates in the following way. We define a pred-
icate as a linear inequality on markings of the form Am ≥ b, where A is a matrix and b is a vector of
coefficients [EM00].

Definition 1.3 (Reachability problem of predicates). The reachability problem of predi-
cates for Petri nets is to decide if a reachable marking m′ ∈ R(PN ,m0) exists, for which a
given predicate Am′ ≥ b holds.

1.1.2.1 State Equation

The incidence matrix of a Petri net is a matrix C|P |×|T |, where C(i, j) = w+(pi, tj)−w−(pi, tj). The
element C(i, j) represents the change in the number of tokens in pi after firing tj .

Example. The incidence matrix of the Petri net in Figure 1.3a can be seen in Figure 1.3b. Note that the
Petri net cannot always be restored from the incidence matrix, e.g. the two arcs between t0 and p2 appear
as a zero in the matrix.

p0

p1

p2

p3

t0

t1
t2

t3

t4

2

2

2

(a) Petri net.

2 0 0 0 0

−1 −1 2 1 −1
0 1 −2 0 0
0 0 0 −1 1

(b) Incidence matrix.

Figure 1.3: Example net and its incidence matrix. Rows and columns correspond to places and tran-
sitions respectively. Each cell denotes the change in the number of tokens at a given place if a given
transition fires.

Amarkingm of a Petri net can be written as a column vector (of size |P |), where the ith element is
the token count of place pi ∈ P . The firing vector uj of a transition tj ∈ T is a column vector (of size

11

1. Extensions to the CEGAR Approach on Petri Nets

|T |) filled with zeros, except the jth place, which is one. Due to the definition of the incidence matrix,
if tj is enabled underm, then the markingm′ after firing tj can be obtained bym′ = m+Cuj . This
can be generalized for a firing sequence σ ∈ Tn bym′ = m+Cuj1+. . .+Cujn where uj1 , . . . ujn are
the firing vectors of transitions in σ. Since matrix-vector multiplication is distributive, substituting
x = uj1 + . . .+ ujn into the previous equation yields the state equation.

Definition 1.4 (State equation). Given a Petri net with is incidence matrix C and an initial
and target markingm andm′, the state equation has the formm+ Cx = m′.

Any vector x ∈ N|T | fulfilling the state equation is called a solution. Note that for any realizable
firing sequence σ leading fromm tom′, the Parikh image of the firing sequence fulfills the equation
m + C℘(σ) = m′. On the other hand, not all solutions of the state equation are Parikh images of
a realizable firing sequence. Therefore, the existence of a solution for the state equation is a neces-
sary but not sufficient criterion for reachability. A solution x is called realizable if a realizable firing
sequence σ exists with ℘(σ) = x.

Example. Consider the Petri net with its incidence matrix in Figure 1.3, and markingsm = (0, 1, 0, 2)
and m′ = (2, 0, 0, 2). For example, x1 = (1, 0, 0, 0, 0) is a solution to the state equation, but it is not
realizable. On the other hand, x2 = (1, 2, 1, 2, 2) is also a solution and it is realizable by the firing
sequence t3t3t1t1t0t2t4t4.

1.1.2.2 T-Invariants

A vector y ∈ N|T | is called a T-invariant if Cy = 0 holds. A realizable T-invariant represents the
possibility of a cyclic behavior in the modeled system since its complete occurrence does not change
the marking. However, while firing the transitions of the T-invariant, some intermediate markings
can be of interest. If each component of the T-invariant y is either zero or one we also denote y by
enumerating the components with value one, e.g. y = (1, 0, 1, 0) can be denoted by y = {t0, t2}.
Note that any linear combination of T-invariants is also a T-invariant.

Example. Consider the Petri net with its incidence matrix in Figure 1.3. For example, y1 = (0, 2, 1, 0, 0)
and y2 = (0, 0, 0, 1, 1) are T-invariants. Moreover, their linear combinations, e.g. y1 + 2y2 =
(0, 2, 1, 2, 2), are also T-invariants.

1.1.2.3 Solution Space

The solution space of the state equationm+Cx = m′ is semi-linear. Each solution x can be written
as the sum of a base solution and the linear combination of T-invariants [WW11], which can formally
be written as x = b +

∑
i niyi, where b ∈ N|T | is the base solution and ni ∈ N is the coefficient of

the T-invariant yi ∈ N|T |.

Example. Consider the Petri net in Figure 1.3. The (realizable) solution x = (1, 2, 1, 2, 2) can be written
as x = b + y1 + 2y2, where b = (1, 0, 0, 0, 0) is a base vector and y1 = (0, 2, 1, 0, 0) and y2 =
(0, 0, 0, 1, 1) are T-invariants.

1.1.3 Linear Programming

Linear programming (LP) is a mathematical approach for finding an optimal solution for a set of linear
inequalities and a linear objective function [Sch86]. The canonical form of a linear programming
problem is the following:

12

1.1. Background

minimize cTx,
subject to Ax ≤ b and

x ≥ 0,

where x is the vector of variables, b, c are vectors, andA is a matrix of coefficients. The feasible region
of the linear programming problem is a convex polyhedron, which is defined by the intersection of a
finite number of half-spaces. Linear programming aims to determine the point in the feasible region,
where the objective function is minimal (or maximal) if such a point exists. Linear programming can
be solved in polynomial time1 [Sch86].

Integer linear programming. When all the variables of x must be integers, the problem is called
the integer linear programming (ILP) problem. Despite linear programming being polynomially solv-
able, integer linear programming is an NP-hard problem [Sch86].

While the definition of (I)LP assumes constraints to be inequalities of the form Ax ≤ b, most
solvers (such as lpSolve) support additional operators, including “≥”, “=”, “<” and “>” (and their
combination). To simplify our presentation in the rest of the thesis, we will assume the existence of
such operators and that they can be reduced to (I)LP. For example, Ax ≥ b becomes (−A)x ≤ −b,
Ax = b becomes Ax ≤ b and Ax ≥ b, and Ax < b becomes Ax ≤ b− 1 (for ILP only).

The basis of our current work is an algorithm (Section 1.1.4) that extends the state equation with
additional constraints to analyze reachability. This is an integer linear programming problem since
the firing counts of transitions must be integers.

1.1.4 CEGAR for Petri Nets

In this section, we present an algorithm published by Wimmel and Wolf [WW11], which applies
counterexample-guided abstraction refinement (CEGAR) to the state equation in order to efficiently
solve the reachability problem of Petri nets.

1.1.4.1 Overview

Existential abstraction [CGL94] is a technique to over-approximate the state space by a simpler, ab-
stract representation. Over-approximation means that for each concrete trace in the state space, there
is a corresponding abstract trace. Therefore, if a property holds for all reachable abstract states, it also
holds for each reachable concrete state. However, if there is a counterexample for which the property
does not hold, it might be caused by the over-approximation. Thus, every counterexample must be
examined whether it has a corresponding concrete counterexample in the original model. If a concrete
counterexample exists, it is a proof that the property does not hold in the original model. Otherwise,
the abstract counterexample is spurious, and the abstraction has to be refined using the information
from the examination. This technique is called counterexample-guided abstraction refinement (CEGAR)
and it is widely used in model checking [Bey+07; Cla+03; Joh+13].

Wimmel and Wolf published an algorithm [WW11], which applies the CEGAR approach to the
reachability analysis of Petri nets by using the state equation as an over-approximating abstraction.
Figure 1.4 shows an overview and each step is detailed in the following subsections.

1While it is polynomially solvable in theory, for practical cases algorithms with exponential worst-case complexity (e.g.
the simplex algorithm) often perform better.

13

1. Extensions to the CEGAR Approach on Petri Nets

Initial
abstraction

Solve abstract
model

Examine
solution

Refine
abstraction

Not reachable Reachable

Reachability
problem

State
equation No solution

Solution
Realizable

Not realizableConstraints

Figure 1.4: Overview of the steps of the Petri net CEGAR algorithm.

1.1.4.2 Initial Abstraction

The input of the algorithm is a reachability problem m′ ∈ R(PN ,m0), which is first transformed
into the initial abstraction, namely the state equation of the formm0 +Cx = m′. The state equation
is a suitable abstraction because it is an over-approximation (due to being a necessary condition for
reachability). Since the state equation is a structural analysis technique, it can potentially handle very
large (or even infinite) state spaces.

1.1.4.3 Solving the Abstract Model

Solving the abstract model (i.e. the state equation) is an integer linear programming problem [Sch86].
The ILP solver yields a minimal solution with respect to the cost function. In the algorithm ofWimmel
andWolf [WW11], the sum of the firing count of transitions (eachweighing one) is minimized in order
to obtain firing sequences with the shortest length.2

The state equation is an over-approximation of the set of reachable markings, since its feasibility
is a necessary, but not sufficient condition for reachability. Therefore, if no abstract solution exists,
the target marking cannot be reached in the Petri net either. However, a solution of the abstract model
may or may not be realizable by a firing sequence. Thus, further examination is needed.

1.1.4.4 Examining the Solution

The solution of the state equation is a vector x ∈ N|T |, where x(t) denotes the number of times a
transition t ∈ T has to fire in order to reachm′ fromm0. However, x does not include any information
about the order of the transition firings and whether they are enabled. Thus, the algorithm has to
explore the state space of the Petri net with a bound that each transition t can fire at most x(t) times.
Amethod for this traversal is discussed later in Section 1.1.4.6. If the target markingm′ can be reached
with this limit (i.e. x is realizable), it is a sufficient proof for reachability. Otherwise, x is a spurious
solution, and the abstraction has to be refined.

1.1.4.5 Abstraction Refinement

If a solution x is not realizable, the ILP solver has to be forced to generate a different solution. This can
be done by adding additional constraints (i.e. linear inequalities over transitions) to the state equation.
The following two types of constraints were defined by Wimmel and Wolf [WW11].

2We also experimented with arbitrary cost functions and a cost-based solution space traversal strategy to solve opti-
mization problems [c14].

14

1.1. Background

• Jump constraints have the form |ti| < n, where n ∈ N, ti ∈ T and |ti| represents the firing count
of the transition ti. Jump constraints can be used to obtain different base solutions, exploiting
their pairwise incomparability.

• Increment constraints have the form
∑

ti∈T ni|ti| ≥ n, where ni ∈ Z, n ∈ N, and ti ∈ T .
Increment constraints can be used to reach non-base solutions, i.e. some linear combination of
T-invariants is added.

Example. Consider the Petri net PN in Figure 1.5a with the reachability problem (1, 0, 1, 0) ∈
R(PN , (0, 0, 1, 0)). There are two base solutions for this problem: (1, 0, 0) (firing t0) and (0, 1, 1) (firing
t1 and t2). Since the ILP solver minimizes the firing count of transitions, it yields the solution (1, 0, 0)
first, which is not realizable. Using a jump constraint |t0| < 1, the ILP solver can be forced to produce a
different base solution (0, 1, 1), which is realizable by t2t1.

Example. Consider the Petri net PN in Figure 1.5b with the reachability problem (1, 0, 1) ∈ R(PN ,
(0, 0, 1)). The only base vector for this problem is the vector (1, 0, 0) (firing t0), which is not realizable.
Using an increment constraint |t1| ≥ 1 (which is 0|t0|+1|t1|+0|t2| ≥ 1 in its full form), the ILP solver
can be forced to add the T-invariant {t1, t2} to the new solution (1, 1, 1), which is realizable by t1t0t2.

p0

p1p2

p3 t0

t1t2

(a) Example where a jump constraint is
needed to produce a token in p0.

p0p1p2 t0

t1

t2

(b) Example where an increment constraint
is needed to produce a token in p0.

Figure 1.5: Example nets illustrating jump and increment constraints.

After adding the new constraint, the state equation either becomes infeasible, or a new solution is
obtained. Figure 1.6 presents the solution space. The bottom dots represent base solutions, while the
cones represent the linear space formed by the T-invariants. The upper dots correspond to non-base
solutions. Jumps are denoted by dashed arrows and increments by continuous arrows. The precise
method for generating constraints and traversing the solution space is presented in later subsections,
but first, partial solutions are introduced.

Figure 1.6: Illustration of the semi-linear solution space of the state equation [WW11]. Each cone rep-
resents a linear space over a solution. Dashed and solid arrows denote jump and increment constraints
respectively.

15

1. Extensions to the CEGAR Approach on Petri Nets

1.1.4.6 Partial Solutions

Definition 1.5 (Partial solution). Given a Petri net PN = (P, T,E,W) and a reachability
problemm′ ∈ R(PN ,m0), a partial solution is a tuple ps = (C, x, σ, r), where:

• C is the set of (jump and increment) constraints, together with the state equation they
define the ILP problem,

• x is the minimal solution (with respect to the cost function defined in Section 1.1.4.3)
satisfying the state equation and the constraints belonging to the set C,

• σ ∈ T ∗ is a maximal realizable firing sequence, with ℘(σ) ≤ x, i.e. each transition t ∈ T
can fire at most x(t) times and enabled transitions must fire in some order,

• r = x− ℘(σ) is the remainder vector.

Partial solutions are generated while examining the solution x by exploring the state space of
the Petri net. For this purpose, Wimmel and Wolf use a “brute force” method with some optimiza-
tion [WW11] (e.g. stubborn sets [Sch99]). Conceptually, the algorithm builds a tree with markings as
nodes and occurrences of transitions as edges. The root of the tree is the initial markingm0, and there
is an edge labeled by t between nodes m1 and m2 if m1[t⟩m2 holds. On each path leading from the
root of the tree to a leaf, each transition ti can occur at most x(ti) times. Each path to a leaf represents
a maximal firing sequence, thus a new partial solution. The marking reached is referred to as the final
marking of the partial solution and is usually denoted by m̂.

The basic algorithm (without any optimizations) can be seen in Algorithm 1.1. It maintains a
queue starting with the initial marking m0 and an empty firing sequence ε. While the queue is not
empty, a node (m,σ) is removed (with respect to some search strategy and possibly some pruning
optimizations [WW11]). Then, for each transition that is both enabled in m and can still fire based
on the solution x, a successor is added. If there were no successors, the current node is a leaf and a
corresponding partial solution is created.

Algorithm 1.1: Generate partial solutions for solution vector.
input : (x, C): Solution vector and its constraints

m0: Initial marking
output: PSS : Partial solutions

1 PSS := ∅
2 queue := {(m0, ε)} // Queue for pairs of markings and firing sequences
3 while queue ̸= ∅ do

4 m,σ := remove from queue
5 foreach enabled ti underm with ℘(σ)(ti) < x(ti) do
6 m′ := fire t fromm, i.e.m[t⟩m′

7 queue := queue ∪ {(m′, σt)}
8 if no nodes were added to queue for (m,σ) then PSS := PSS ∪ {(C, x, σ, x− ℘(σ))}
9 return PSS

Example. Consider the Petri net in Figure 1.7a with the solution vector x = (2, 1). The tree of partial
solutions for x can be seen in Figure 1.7b. There are three different maximal firing sequences, thus three
partial solutions. Note that there can be maximal firing sequences with different lengths. For example,
t0t0 has length 2, and t0t1t0 has length 3. Both are maximal, because no transitions are enabled at their
final marking.

16

1.1. Background

p0

p1 p2

t0 t1

(a) Petri net.

(0, 2, 1)

(1, 1, 1) (1, 2, 0)

(2, 0, 1) (2, 1, 0) (2, 1, 0)

(3, 0, 0) (3, 0, 0)

t0 t1

t0 t1

t0

t0

t0

(b) Tree of partial solutions for solution vector (2, 1).

Figure 1.7: Example net and its tree of partial solutions for a given solution vector. Each leaf (under-
lined) is a maximal firing sequence, thus a partial solution.

A partial solution is called a full solution if r = 0 holds, i.e. ℘(σ) = x. Finding a full solution
means that the solution vector x is realizable, and the algorithm can stop. Wimmel and Wolf proved
that for each realizable solution of the state equation, a full solution exists. Furthermore, this full
solution can be reached by continuously expanding the minimal solution of the state equation with
constraints [WW11].

Consider now a partial solution ps = (C, x, σ, r), which is not a full solution. This means that
some transitions could not fire enough times. There are three possible situations in this case:

1. xmay be realizable by another firing sequence σ′, thus a full solution ps ′ = (C, x, σ′, 0) can be
found in the tree of x.

2. By adding jump constraints, greater, but pairwise incomparable solutions can be obtained.
3. For transitions t ∈ T with r(t) > 0 increment constraints can be added to increase the token

count in the input places of t. The final markingm′ must be unchanged, so this can be achieved
by including additional T-invariants in the solution. During intermediate markings, these T-
invariants can “borrow” tokens for transitions in the remainder vector.

1.1.4.7 Generating Constraints

When a partial solution is not a full solution, both jump and increment constraints can be added, but
they are applied on a different level:

• Jump constraints are generated from solution vectors of the state equation.
• Increment constraints are generated from partial solutions (belonging to solution vectors).

Jump constraints. Given a solution vector x, for each transition ti ∈ T with x(ti) > 0 a jump
constraint ci of the form |ti| < x(ti) can be added to the state equation, as illustrated by Algorithm 1.2.
If a new solution vector yi is obtained after adding one of the constraints ci, this process can be
recursively repeated for yi (see later in the main loop, presented in Section 1.1.4.9). Wimmel andWolf
proved that every base solution can be obtained using jump constraints [WW11].

Transforming jumps. Reaching non-base solutions requires increment constraints, but theymight
conflict previous jump constraints. As an example, consider that the solution b1 = (2, 0, 0) is reached
with the jump constraint |t1| < 1 from the minimal solution b0 = (0, 1, 0). If now we want to add
the T-invariant {t1, t2} to b1 that would contradict with the previous constraint. Since jumps are only
used to obtain pairwise incomparable solutions, they can be transformed into equivalent increment
constraints using Algorithm 1.3.

17

1. Extensions to the CEGAR Approach on Petri Nets

Algorithm 1.2: Generate new solution vectors with jump constraints.
input : (x, C): Solution vector and its constraints
output: XS : New solution vectors (and constraints) with jumps

1 XS := ∅
2 foreach ti ∈ T with x(ti) > 0 do

3 ci := |ti| < x(ti)
4 if solution yi exists for C ∪ {ci} then XS := XS ∪ {(yi, C ∪ {ci})}
5 return XS

Algorithm 1.3: Transform jump constraints into increment constraints.
input : C: Set of constraints

z: Minimal solution fulfilling C
output: C′: Set of constraints with no jumps

1 C′ := each increment constraint of C
2 foreach ti ∈ T do C′ := C′ ∪ {|ti| ≥ z(ti)}
3 return C′

Suppose that C is a set of jump and increment constraints, and z is the minimal solution fulfilling
the state equation and C. Let C′ include each increment constraint of C and an additional increment
constraint of the form |ti| ≥ z(ti) for each transition ti ∈ T . Then, a vector y ≥ z is a solution of the
state equation plus C ∩ C′ if and only if y is a solution of the state equation and C′. Furthermore, no
solution smaller than z fulfills the state equation and C′. This means that if we are interested in the
solutions of the linear space over z, we can replace C with C′, which no longer contains conflicting
jump constraints [WW11].

Increment constraints. Let ps = (C, x, σ, r) be a partial solution with r > 0. This means that
some transitions could not fire enough times. Wimmel and Wolf use a heuristic [WW11] to find the
places and number of tokens needed to enable these transitions. If a set of places actually needs n
(n > 0) tokens, the heuristic estimates a number from 1 to n. If the estimate is too low, this method
can be applied again, converging to the actual number of required tokens. The heuristic – formalized
by Algorithm 1.4 – consists of three steps: (1) building a dependency graph to determine places that
need additional tokens, (2) determining the number of tokens needed, and (3) creating constraints
based on the places and their token requirements.

Let m̂ be the final marking of the partial solution ps , i.e. m0[σ⟩m̂. The first step is to build a
dependency graph G = (P0 ∪ T0, E), which consists of transitions that could not fire enough times
(T0) and places (P0) that disable these transitions under m̂. An edge (p, t)means that p disables t under
m̂, while an edge (t, p) means that firing t would increase the token count of p. Each source SCC3 of
the dependency graph has to be investigated, because it cannot get tokens from other components.
For each source SCC the heuristic determines a tuple (Pi, Ti, Xi), where Pi is the set of places of the
SCC, Ti is the set of transition of the SCC, andXi is the set of transitions outside the SCC that depend
on the current SCC.

The second step is to calculate the token requirement of each source SCC with the tuple
(Pi, Ti, Xi). There are two possible cases.

3Source strongly connected component, i.e. one without incoming edges from other components.

18

1.1. Background

• If Ti ̸= ∅, then enabling one transition ti ∈ Ti may enable all the others, since ti can produce
additional tokens in some places of Pi. In this case n is the number of tokens required by the
transition missing the least tokens.

• If Ti = ∅, then Pi can only consist of a single place pi. This means that the token requirements
of Xi must be fulfilled by pi. However, transitions of Xi can also produce tokens in pi, which
has to be considered in the estimation. Transitions therefore, are ordered in groups: each group
Gj consists of transitions t ∈ Xi that produce j tokens in pi. Firing the transitions of a group
with the smallest value j last minimizes the leftover (denoted by c) at pi. Transitions in the
same group Gj can be processed at once, each using w−(pi, t) − j tokens, except for the first
one, which requires j additional tokens. The tokens produced by a group Gj can be consumed
by the next groupGj−1. After processing each group, we get the estimated number n of tokens
required to fire each transition in Xi.

Algorithm 1.4: Find increment constraints for a partial solution.
input : ps = (C, x, σ, r): Partial solution with r > 0

m0: Initial marking
output: C′: Constraints extended with new increment constraints

1 m̂ := final marking of ps , i.e.m0[σ⟩m̂
2 // Step 1: build dependency graph G
3 T0 := {t ∈ T | r(t) > 0}
4 P0 := {p ∈ P | ∃t ∈ T0 : w

−(p, t) > m̂(p)}
5 E := {(p, t) ∈ P0 × T0 | w−(p, t) > m̂(p)} ∪ {(t, p) ∈ T0 × P0 | w+(p, t) > w−(p, t)}
6 C′ := C
7 foreach source SCC i in G = (P0 ∪ T0, E) do
8 Pi := SCC i ∩ P0

9 Ti := SCC i ∩ T0
10 Xi := {t ∈ T0 \ SCC i | ∃p ∈ Pi : (p, t) ∈ E}
11 // Step 2: estimate n
12 if Ti ̸= ∅ then n := mint∈Ti(

∑
p∈Pi

max(0, w−(p, t)− m̂(p))

13 else

14 pi := single place of Pi // if Ti = ∅ then |Pi| = 1
15 sort Xi in groups Gj := {t ∈ Xi | w+(pi, t) = j}
16 n := c := 0
17 foreach j with Gj ̸= ∅ downwards loop do

18 c := c+ j +
∑

t∈Gj
r(t) · (w−(pi, t)− j)

19 if c > 0 then n := n+ c
20 c := −j
21 // Step 3: create constraint c′
22 P ′ := Pi

23 T ′ := {t ∈ T | r(t) = 0 ∧
∑

p∈P ′(w+(p, t)− w−(p, t)) > 0}
24 c′ :=

∑
t∈T ′

∑
p∈P ′(w+(p, t)− w−(p, t)) · |t| ≥

n+
∑

t∈T ′
∑

p∈P ′(w+(p, t)− w−(p, t)) · ℘(σ)(t)
25 C′ := C′ ∪ {c′}
26 return C′

19

1. Extensions to the CEGAR Approach on Petri Nets

The third step is to calculate an increment constraint. Let P ′ be the set of places, which require
n additional tokens and T ′ be the transitions outside the remainder vector that can produce tokens
in the places of P ′. The left-hand side of the constraint c′ consists of transitions weighted with the
number of tokens produced in P ′. The formula on the right-hand side is the estimate n plus the
number of tokens already produced by the transitions in the firing sequence σ. This constraint will
force transitions (with r(t) = 0) to produce tokens in the given places. Since the final marking has to
be left unchanged, only a T-invariant can be added to the solution vector.

Finally, when applying the new constraints, three situations are possible depending on the T-
invariants in the Petri net (see also later in the main loop, presented in Section 1.1.4.9):

• If the state equation and the set of constraints become infeasible, this partial solution cannot
be extended to a full solution. Therefore it is no longer of interest.

• If the ILP solver can produce a solution x′ = x + y (with y being a T-invariant), new partial
solutions can be found for x′.

– If there is a new partial solution ps ′ where some transitions in the remainder vector could
fire (compared to ps), thismethod can be repeated, eventually converging to a full solution.

– If none of partial solutions helps to get closer to a full solution, repeating this method
might lead the algorithm into an infinite loop: as the remainder r did not change, incre-
ment constraints will simply add the same invariant (y) again and again. A method to
avoid this non-termination phenomenon will be discussed later in Section 1.1.4.8.

Reachability of a realizable solution. The following theorem of Wimmel and Wolf [WW11]
states that if the reachability problem has a solution, it can be reached by the CEGAR approach:
If the reachability problem has a solution, a realizable solution of the state equation can be reached by
continuously expanding the minimal solution with jump and increment constraints.

1.1.4.8 Optimizations

Wimmel and Wolf also presented some methods for optimization [WW11]. In our current work, only
the following, T-invariant filtering optimization is essential. After adding a T-invariant y to the partial
solution ps = (C, x, σ, r), all the transitions of ymay firewithout enabling any transition in r, yielding
a partial solution ps ′ = (C′, x + y, σ′, r) with ℘(σ′) = ℘(σ) + y. The final marking and remainder
vector of ps ′ is the same as in ps . Therefore the same T-invariant y would be added to the solution by
the heuristic (Algorithm 1.4) again, possibly preventing termination. Thus, the optimization cuts the
search space at ps ′. This check is performed using Algorithm 1.5. Given the new partial solution ps ′,
the optimization checks each partial solution ps∗ belonging to each ancestor solution vector x of ps ′.
If the remainders are equal and the firing sequences differ in a T-invariant, then ps ′ can be skipped
due to ps∗.

Algorithm 1.5: Check if a partial solution can be filtered based on T-invariants.
input : ps ′ = (C′, x′, σ′, r′): Partial solution to be checked
output: (skip or no skip, ps∗): Result and the other part. sol. that caused skipping (if exists)

1 foreach solution vector x from ancestors of ps ′ do
2 foreach partial solution ps∗ = (C, x, σ, r) of x do

3 if ps∗ ̸= ps ′ and ℘(σ′)− ℘(σ) is T-invariant and r′ = r then return (skip, ps∗)
4 return (no skip, ps ′)

20

1.1. Background

Note that if a partial solution ps ′ = (C′, x + y, σ′, r) was skipped, while firing the transitions
of y, the algorithm could get closer to enabling a transition in r (without reaching the limit where
it becomes enabled). These “better” intermediate markings should be detected, and be used as new
partial solutions (an example will be presented in Section 1.1.4.10).Wimmel andWolf gave a definition
for better intermediate markings, which we generalized in our former work [j1] as follows.

Definition 1.6 (Better intermediate marking). An intermediate marking mi is considered
better than the final marking m̂ of the firing sequence σ if there exists a transition twith r(t) > 0
and a place p with (p, t) ∈ E for which m̂(p) < w−(p, t) ∧ mi(p) > m̂(p) holds.

This means that t is disabled by p and p had more tokens in the intermediate marking mi than in
the final marking m̂. In this case, the algorithm skips ps ′ but instead, continues from a new partial
solutionwhere the firing sequence σwas only fired up to the intermediatemarkingmi.4 Algorithm 1.6
presents a method to find better intermediate markings by replaying the firing sequence and checking
the above definition at each step.

Algorithm 1.6: Get new partial solutions from better intermediate markings.
input : ps = (C, x, σ, r): Skipped partial solution

m0: Initial marking
output: PSS : New partial solutions

1 PSS := ∅
2 m̂ := final marking of ps , i.e.m0[σ⟩m̂
3 foreach prefix σi of σ with length i (0 ≤ i ≤ |σ|) do
4 mi := fire σi fromm0, i.e.m0[σi⟩mi

5 if ∃t ∈ T, ∃p ∈ P : r(t) > 0 ∧ (p, t) ∈ E ∧ m̂(p) < w−(p, t) ∧mi(p) > m̂(p) then
6 PSS := PSS ∪ {(C, x, σi, x− ℘(σi))}
7 return PSS

1.1.4.9 Main Loop of the Algorithm

Algorithm 1.7 summarizes the main loop of the CEGAR approach on Petri nets, building on the previ-
ously presented algorithm snippets (denoted by small caps). A dashed underline indicates new contri-
butions to be presented later. For the baseline algorithm, their whole line should be ignored (removed).

The input of the algorithm is the Petri net PN with its initial marking m0, and the initial set of
constraints C0. For reachability, C0 is simply the state equationm0+Cx = m′, but in Section 1.2.1 we
generalize it to allow an arbitrary linear predicate over the state to be reached. The algorithm starts
by checking the initial conditions C0. If a solution x exists, it is added to the queue with an empty set
of additional constraints. For simplicity of the presentation, we assume from this point on that the
initial constraints C0 are always part of the ILP problem to be solved.

While the queue is not empty, an element is removed based on some search strategy (see Sec-
tion 1.2.4 for different strategies). If the current element is a solution vector (with its constraints), we
first use jump constrains to generate new solutions. Then, we build the tree of partial solutions and
check if a full solution exists (terminating the algorithm). Later, we present an ordering and filtering
over the partial solutions (Section 1.2.4.3), but for now we just put all of them in the queue.

4Note that the definition of partial solutions (Definition 1.5) requires the firing sequence to be maximal. We omit this
restriction for these special cases when a partial solution is obtained via better intermediate markings.

21

1. Extensions to the CEGAR Approach on Petri Nets

Algorithm 1.7:Main loop of the Petri net CEGAR algorithm.
input : PN : Petri net

m0: Initial marking
C0: Initial constraints

output: (Reachable, σ) or Not reachable or Inconclusive
1 queue := ∅ // Mixed queue of solution vectors (with constraints) and partial solutions
2 if a solution x exists for C0 then queue := {(x, ∅)}
3 while queue ̸= ∅ do

4 e := remove element from queue // Based on some search strategy (see Section 1.2.4)
5 if e is a solution vector (x, C) then
6 queue := queue ∪ SolutionsWithJumps(x, C) ○ Algorithm 1.2
7 PSS := PartialSolutions(x, C,m0) ○ Algorithm 1.1
8 if ∃(C, x, σ, r) ∈ PSS with r = 0 then return Reachable, σ
9 PSS := OrderAndFilter(PSS) ○ Algorithm 1.11

10 queue := queue ∪ PSS

11 else if e is a partial solution ps = (C, x, σ, r) then
12 result, ps∗ := FilterTInv(ps) ○ Algorithm 1.5
13 if result is no skip then result, ps∗ := FilterTInvRemainder(ps) ○ Algorithm 1.10
14 if result is skip then

15 queue := queue ∪ BetterIntermediate(ps,m0) ○ Algorithm 1.6
16 queue := queue ∪ DistantInv(ps, ps∗,m0) ○ Algorithm 1.9
17 else

18 ps := (C := TransformJumps(C, x), x, σ, r) ○ Algorithm 1.3
19 C′ := C ∪ IncrementConstraints(ps,m0) ○ Algorithm 1.4
20 C′ := C′ ∪ InhibitorIncrementConstraints(ps,m0) ○ Algorithm 1.8
21 if C′ ̸= C and a solution x exists for C′

then queue := queue ∪ {(x, C′)}
22 if no partial solution was skipped then return Not reachable
23 else return Inconclusive

If the current element is a partial solution, we first check if it can be skipped (Section 1.1.4.8).
Later, we present a further criterion for skipping (Section 1.2.3.3). If the partial solution was skipped,
we search for better intermediate markings and add them to the queue. Later, we present an approach
to find new solutions by adding so-called “distant” invariants (Section 1.2.3). If the partial solution
is not skipped, we first transform jumps and then generate increment constraints. If the net con-
tains inhibitor arcs, an algorithm to be presented in Section 1.2.2 can add further constraints. If new
constraints are found (C′ ̸= C) and there is a solution, it is added to the queue.

Finally, if the queue is empty and no full solution was found, the algorithm terminates with a
conclusive “not reachable” answer if and only if no partial solutions were skipped during the process.

1.1.4.10 A Complex Example

Example. As a complex example illustrating the whole algorithm, consider the Petri net PN in Fig-
ure 1.8a with the reachability problem (1, 0, 0, 2) ∈ R(PN , (0, 0, 0, 2)), i.e. to produce a token in p0.
The solution space (including partial solutions) is presented in Figure 1.9, and it is explained thoroughly
in the following.

22

1.1. Background

p0

p1

p2

p3

t0

t1 t2

t3 t4

(a) Petri net with the reachability
problem to produce a token in p0.

t0
p1 p2

(b) Dependency graph of ps0.

t0

p1 p2t1

t2

(c) Dependency graph of ps1.

Figure 1.8: A complex example demonstrating various aspects of the algorithm.

The root of the solution space is the minimal solution vector (1, 0, 0, 0, 0), denoted by sv0 (i.e. firing
t0). Since t0 is not enabled, the only partial solution is ps0, with the empty firing sequence σ0. The
algorithm builds a dependency graph (Figure 1.8b) to determine the increment constraints. The graph has
edges from p1 and p2 to t0 because they disable t0. Edges in the opposite direction are not present, since
firing t0 does not increase the token count of p1 or p2.

There are two source SCCs for ps0:
• SCC 1({p1}, ∅, {t0}): One token is required in p1, where t2 can produce tokens, so the increment
constraint is |t2| ≥ 1.

• SCC 2({p2}, ∅, {t0}): One token is required in p2, where t1 and t4 can produce tokens, so the
increment constraint is |t1|+ |t4| ≥ 1.

The new minimal solution fulfilling the state equation and the constraints is (1, 1, 1, 0, 0), labeled by
sv1 (i.e. the T-invariant {t1, t2} is added). Since none of the transitions t0, t1, t2 is enabled, the only
partial solution is ps1 with the empty firing sequence σ1. The dependency graph for ps1 can be seen in
Figure 1.8c. There are two edges going from transitions to places as well, since t1 and t2 can increase the
token count of p2 and p1. The only source SCC is SCC ({p1, p2}, {t1, t2}, {t0}). One token in p1 or p2
might enable all the transitions of the SCC. The increment constraint takes the form |t4| ≥ 1, since t4 is
the only transition outside the remainder that can produce tokens in the SCC.

The new solution vector is (1, 1, 1, 1, 1), denoted by sv2 (i.e. the T-invariant {t3, t4} is added). Two
partial solutions can be found for sv2:

• ps21 has the firing sequence σ21 = t4t3, but it is skipped by the T-invariant filtering optimization:
it has the same remainder as ps1 and the firing sequences are only different in the T-invariant
{t3, t4}.5 However, if only t4 is fired from σ21 = t4t3, we are closer to enabling t0, since it misses
only one token. This better intermediate state is denoted by bs1. In bs1, one token is missing from
p1, where only t2 could produce tokens, but r(t2) > 0, so this partial solution cannot be extended
with constraints.

• The other partial solution is ps22 with the firing sequence σ22 = t4t2t1t3. ps22 is also skipped by
the T-invariant filtering optimization: it has the same remainder as ps0 and the firing sequences
are only different in the T-invariant {t1, t2, t3, t4}. However, there is a better intermediate state
bs2, where only t4 and t2 is fired from σ22. This intermediate state misses a token from p2, where
t1 and t4 can produce tokens. Since r(t1) > 0, the constraint is |t4| ≥ 2.

5Without the optimization, the algorithm would add the T-invariant {t3, t4} to the solution vector again and again. In
this particular case, this would lead to a full solution, but in general, adding the same invariant infinitely many times can
lead to non-termination.

23

1. Extensions to the CEGAR Approach on Petri Nets

The new solution vector is (1, 1, 1, 2, 2), denoted by sv3 (i.e. the T-invariant {t3, t4} is added).
sv3 has many partial solutions, but there is a full solution as well: ps3 with the firing sequence
σ3 = t4t4t2t0t1t3t3.

sv0: (1, 0, 0, 0, 0)

ps0: σ0 = ε
r0 = (1, 0, 0, 0, 0)

sv1: (1, 1, 1, 0, 0)

|t2| ≥ 1
|t1|+ |t4| ≥ 1

ps1: σ1 = ε
r1 = (1, 1, 1, 0, 0)

sv2: (1, 1, 1, 1, 1)

|t4| ≥ 1

ps21: σ21 = t4t3
r21 = (1, 1, 1, 0, 0)

ps22: σ22 = t4t2t1t3
r22 = (1, 0, 0, 0, 0)

Skip

Skip

bs1: σb1 = t4
rb1 = (1, 1, 1, 1, 0)

Better intermediate state

No constraint

bs2: σb2 = t4t2
rb2 = (1, 1, 0, 1, 0)

Better intermediate state

sv3: (1, 1, 1, 2, 2)
|t4| ≥ 2

ps3: σ3 = t4t4t2t0t1t3t3
Full solution

.

Figure 1.9: Solution space of the example seen in Figure 1.8. Solution vectors are denoted by rounded
rectangles with their corresponding partial solutions in regular rectangles.

1.1.4.11 Completeness, Soundness and Conclusive Answers of the Algorithm

After Wimmel and Wolf published their algorithm, we examined if it is complete and sound, and
whether it gives a conclusive answer6 for every input [j1]. We conclude this section by summarizing
these findings as they are relevant for the new contributions.

6In our papers [c4; j1; c5] we use the term “complete” to refer to an algorithm that always returns a conclusive answer.
Furthermore, we use the term “correctness” for being both sound and complete.

24

1.2. Extensions

Completeness. The algorithm is complete (does not report “reachable” for an unreachable state)
by construction because a solution x is only claimed to be realizable if there is a corresponding full
solution. The firing sequence σ of the full solution (℘(σ) = x) is computed by exploring the concrete
state space of the Petri net (Algorithm 1.1). Therefore, σ is realizable in the Petri net and it leads from
the initial markingm0 to the target markingm′, proving the correctness of the answer “reachable”.

Soundness. We proved by a counterexample7 that the algorithm is unsound due to an over-
estimation in the increment constraint generating heuristic, resulting in an answer “not reachable”
for a reachable marking [c4]. We suggested a method to detect such situations and to give an incon-
clusive answer (instead of a wrong “not reachable” answer). We also presented an extension to the
algorithm that tries to find the solution in such cases, increasing the number of potential conclusive
answers [j1]. To the best of our knowledge, our extended algorithm gives an inconclusive answer
instead of “not reachable” if no full solution was found and potentially unsound optimizations or
heuristics were applied to cut the search space. However, we did not prove this formally, leaving it
as potential future work. Coming up with such a proof can be challenging due to the complexity of
the algorithm, but a first step towards this direction could be done by restricting the proof to certain
subclasses of nets that are easier to manage (e.g. acyclic nets [Mur89]).

Conclusive answers. We presented several subclasses of Petri nets for which the algorithm could
not decide reachability, and we suggested solutions to most of them. However, we proved that the
improved algorithm can still give inconclusive answers due to its iteration strategy.8 In our current
work we present a similar, but simpler proof (Section 1.2.3.1) and we propose a new iteration strategy
to extend the set of problems where the algorithm is conclusive (Section 1.2.3.2).

1.2 Extensions

In this section, we propose various extensions and improvements to the CEGAR approach [WW11]
presented before.We generalize the algorithm to be able to solve reachability problemswith predicates
(Section 1.2.1) and to handle inhibitor arcs (Section 1.2.2). We define the concept of distant invariants
and a new iteration strategy, which extends the set of decidable problems (Section 1.2.3). Finally, we
discuss different search strategies and propose an efficient combination (Section 1.2.4).

1.2.1 Reachability of Predicates

In Section 1.1.2, we generalized the reachability problem to predicates of the form Am′ ≥ b, where A
is a matrix, and b is a vector of coefficients. However, as argued in Section 1.1.3 additional operators
(such as “=” or “≤”) can be reduced to this form. We use “≥” to make our presentation simpler, but in
our implementation we provide all the operators that the ILP solver supports (and even their mixture,
i.e. possibly different operators for each row of A).

7This counterexample on soundness was found by a fellow student, Zoltán Mártonka [c4].
8This example with an inconclusive answer was found by András Vörös [Vör18].

25

1. Extensions to the CEGAR Approach on Petri Nets

Predicates are a generalization of the reachability problem,9 having various advantages. For ex-
ample, it is easier to check the reachability of local conditions in complex nets because the target
marking does not need to be fully specified. Furthermore, we can formulate properties involving
multiple places, such as the sum of tokens.

Our key idea of handling predicates in the CEGAR approach is to transform the conditions over
places into conditions on transitions. However, first, we have to make sure that the constraints do
not allow negative tokens in any of the places, i.e. m′(pi) ≥ 0 must always implicitly hold for each
pi ∈ P . This can be done by extending the rows of A with a unit (identity) matrix of size |P | and
extending b with |P | additional zeros. Let this extended matrix and vector be denoted by A′ and b′,
respectively.

The second step is to substitutem′ in the predicate with the state equationm0 + Cx = m′. This
yields the inequality of the form

A′(m0 + Cx) ≥ b′,

which can be reordered in the form

(A′C)x ≥ b′ −A′m0.

This set of inequalities can now be solved as an ILP problem for transitions. Note that the above
substitution and reordering is also valid for operators other than “≥”. Our extended algorithm uses
this modified form of the state equation as the initial abstraction (C0 in Algorithm 1.7), and expands
it with additional (jump or increment) constraints during refinement.

Note that the solution space looks different with predicates than with basic reachability because
there might be multiple potential target markings satisfying the constraints. In this generalized solu-
tion space, increment constraints do not necessarily add T-invariants. However, the algorithm does
not rely on this fact and works for this generalized case as well.

Example. Recall the Petri net PN in Figure 1.3 and suppose that we want to get at least one token
in p0. This can be formulated with A = [1 0 0 0] and b = (1). A′ is obtained by extending A with a
4×4 unit matrix and b′ becomes (1, 0, 0, 0, 0). The base solution is (1, 0, 0, 0, 0), i.e. firing t0 which is not
realizable because p2 lacks a token. The algorithm adds a constraint |t1| ≥ 1 resulting in the new solution
(1, 1, 0, 1, 0), i.e. t1 and t3 are added (which is not a T-invariant). Note that the increment constraint
only specified that t1 has to be included, but t3 also gets involved due to non-negativity constraints. This
solution is realizable by t3t1t0.

1.2.2 Inhibitor Arcs

We presented inhibitor arcs in Section 1.1.1 as an important extension to Petri nets. They lift the
expressive power to be Turing-complete by allowing to test for the lack of tokens at a place [Pet81].
While analysis methods are usually theoretically limited if inhibitor arcs are involved [Bus02] (e.g.
reachability is undecidable in general [Chr99]), they are still relevant for practical cases.

The key challenge of handling inhibitor arcs in the CEGAR approach is that they do not appear
in any form in the state equation, which is used as an abstraction. Therefore, a solution vector may
be unrealizable because inhibitor arcs disable some transitions. In this case, tokens must be removed

9A reachability problemm′ ∈ R(PN ,m0) can be expressed with predicates by settingA to be a unit (identity) matrix,
b = m′ and using the “=” operator in the constraints. In our prior work [c4; j1] we referred to this problem as “submarking
coverability”, but that terminology is misleading as coverability is not a generalization of reachability. Predicates are trivially
a generalization of coverability (by setting A as the unit matrix and b as the marking to be covered), but as argued before,
they are also a generalization of reachability.

26

1.2. Extensions

from connected places. Our strategy is to add transitions to the solution vector, which consume tokens
from such places. Increment constraints (Algorithm 1.4) are suitable for this purpose, but they have
to be generated in a different way (Algorithm 1.8).

Algorithm 1.8: Find increment constraints for a partial solution with inhibitor arcs.
input : ps = (C, x, σ, r): Partial solution with r > 0

m0: Initial marking
output: C′: Constraints extended with new increment constraints

1 m̂ := final marking of ps , i.e.m0[σ⟩m̂
2 // Step 1: build dependency graph G
3 T0 := {t ∈ T | r(t) > 0 ∧ ∃p ∈ P : (p, t) ∈ I ∧ m̂(p) > 0}
4 P0 := {p ∈ P | ∃t ∈ T0 : (p, t) ∈ I ∧ m̂(p) > 0}
5 E := {(p, t) ∈ P0 × T0 | (p, t) ∈ I ∧ m̂(p) > 0} ∪ {(t, p) ∈ T0 × P0 | w+(p, t) < w−(p, t)}
6 C′ := C
7 foreach source SCC i in G = (P0 ∪ T0, E) do
8 Pi := SCC i ∩ P0

9 Ti := SCC i ∩ T0
10 Xi := {t ∈ T0 \ SCC i | ∃p ∈ Pi : (p, t) ∈ E}
11 // Step 2: estimate n
12 if Ti ̸= ∅ then n := mint∈Ti(

∑
p∈Pi | (p,t)∈I m̂(p))

13 else n := m̂(pi) where pi is the single place of Pi // if Ti = ∅ then |Pi| = 1
14 // Step 3: create constraint c′
15 P ′ := Pi

16 T ′ := {t ∈ T | r(t) = 0 ∧
∑

p∈P ′(w+(p, t)− w−(p, t)) < 0}
17 c′ :=

∑
t∈T ′

∑
p∈P ′(w−(p, t)− w+(p, t)) · |t| ≥

n+
∑

t∈T ′
∑

p∈P ′(w−(p, t)− w+(p, t)) · ℘(σ)(t)
18 C′ := C′ ∪ {c′}
19 return C′

The first step is to construct a dependency graph similar to the original one (Section 1.1.4.7). The
graph consists of transitions that could not fire due to inhibitor arcs and places that disable these
transitions (by having nonzero tokens). The arcs of the graph have an opposite meaning: an arc from
a place to a transition means that the place disables the transition, while the other direction means
that firing the transition would decrease the number of tokens in the place. Each source SCC of the
graph is interesting because tokens cannot be consumed from them by another SCC.

The second step is to estimate the minimal number of tokens to be removed from each source
SCC. There are two sets of transitions as well, Ti ⊆ T and Xi ⊆ T . If Ti ̸= ∅, then enabling one
transition in Ti may enable all the others. In this case n is determined by finding the transition that
has the least tokens in places connected with inhibitor arcs. Otherwise, if Ti = ∅, then Pi can only
consist of a single place pi, from which all the tokens should be removed.10

The third step is to construct an increment constraint for each source SCC, by firing transitions
(with r(t) = 0) to consume the required number of tokens from the place of the SCC.

10This step of the algorithm is simpler than the corresponding part of the algorithm for normal arcs (Algorithm 1.4), be-
cause inhibitor arcs do not have weights. It is also possible to define inhibitor arcs with weights, in which case Algorithm 1.8
would have to adapt the more general solution of Algorithm 1.4.

27

1. Extensions to the CEGAR Approach on Petri Nets

When a partial solution is not a full solution, and there are transitions disabled by inhibitor arcs
in the final marking, the previous heuristic is used to generate the constraint. If there are transitions
disabled by normal arcs as well, both the original heuristic (Algorithm 1.4)11 and the modified ver-
sion (Algorithm 1.8) must be used, taking the union of the generated constraints (see main loop in
Section 1.1.4.9). Analogously to the original heuristic, if n tokens have to be removed, the estimate is
between 1 to n and can be repeated if too low.

Inhibitor arcs also affect the T-invariant filtering optimization (Section 1.1.4.8): an intermediate
marking is now of interest when it has fewer tokens in a place, which is connected by an inhibitor arc
to a transition that cannot fire. Formally, the definition of better intermediate markings (Definition 1.6,
and also Algorithm 1.6) changes as follows.

Definition 1.7 (Better intermediate marking, inhibitor arcs). An intermediate marking
mi is considered better than the final marking m̂ of the firing sequence σ if Definition 1.6
holds or there exists a transition t with r(t) > 0 and a place p with (p, t) ∈ I for which
m̂(p) > 0 ∧ mi(p) < m̂(p) holds.

Example. Consider the Petri net PN in Figure 1.10 with the reachability problem (1, 0, 0, 1) ∈
R(PN , (0, 0, 0, 1)), i.e. producing a token in p0. The minimal solution is (1, 0, 0, 0, 0), i.e. firing t0,
but it is not realizable. The original heuristic can determine that t0 is disabled by p1 and generates the
constraint |t1| ≥ 1. Our extended heuristic continues by creating a dependency graph for inhibitor arcs,
consisting of t0 and p3 with an edge from p3 to t0. The only source SCC is the single node p3 from where t3
can remove tokens so the constraint |t3| ≥ 1 is generated. The two constraints together force the ILP solver
to add invariants {t1, t2} and {t3, t4} to the new solution (1, 1, 1, 1, 1) which is realizable by t3t1t0t2t4.

p0

p1 p2 p3

t0

t1

t2

t3

t4

Figure 1.10: Example net where producing a token in p0 requires increment constraints both to pro-
duce a token in p1 and to remove one from p3.

1.2.3 Distant Invariants

In this section, we show that the algorithm of Wimmel and Wolf [WW11] cannot decide reachability
for relatively simple examples, because not every necessary invariant is explored (Section 1.2.3.1).
We propose a new iteration strategy to traverse the invariant space by involving so-called “distant”
invariants (Section 1.2.3.2). We show that this new approach extends the set of decidable problems,
and we also give theoretical results on its limitations. We also present a new filtering criterion (Sec-
tion 1.2.3.3), which can further avoid non-termination of the algorithm.

11Algorithm 1.4 also needs a slight modification. In step 1, T0 needs the extra condition ∃p ∈ P : m̂(p) < w−(p, t) to
make sure that transitions in Ti are disabled by normal arcs.

28

1.2. Extensions

1.2.3.1 Proof of Inconclusive Answers

Weprove that the algorithm published byWimmel andWolf [WW11] can give an inconclusive answer
with the following example. Consider the Petri net PN in Figure 1.11 with the reachability problem
(1, 1, 0) ∈ R(PN , (0, 1, 0)), i.e. producing a token in p0. The vector xs = (1, 1, 1, 1, 1) is a solution,
realized by the firing sequence σs = t3t1t0t2t4.

p0 p1 p2t0

t1

t2

t3

t4

2
2

Figure 1.11: An example where checking if a token can be produced in p0 results in an inconclusive
answer by the algorithm.

The algorithm does the following steps. The minimal solution vector is x0 = (1, 0, 0, 0, 0), i.e.
firing t0. Since t0 is not enabled, the only partial solution is ps0 = (∅, x0, σ0 = ε, r0 = (1, 0, 0, 0, 0)).
The algorithm finds that an additional token is required in p1 and only t1 can satisfy this need. With
an increment constraint c1 : |t1| ≥ 1, the T-invariant {t1, t2} is added to the new solution vector
x1 = (1, 1, 1, 0, 0). Only t2 and t1 can fire (in this order), thus the only partial solution for x1 is
ps1 = ({c1}, x1, σ1 = t2t1, r1 = r0). This partial solution is skipped by the T-invariant filtering
optimization since the only difference from ps0 is that all transitions of a T-invariant were fired.
Furthermore, there are no better intermediate markings, since no additional token was “borrowed”
from the T-invariant {t1, t2}. The algorithm terminates at this point, leaving the problem undecided.
Without the filtering optimization, the algorithm would add the T-invariant {t1, t2} again and again,
preventing termination.

The problem is that the original algorithm does not recognize that although {t1, t2} can fire, it
only “circulates” the same token, instead of “lending” a new one. An extra token could be produced in
p2 (and then moved in p1) using the T-invariant {t3, t4}. However, {t3, t4} is not connected directly to
p1 (where the tokens are missing), so the iteration strategy of the algorithm does not try to involve it.
We propose an extension to the iteration strategy in Section 1.2.3.2 in order to involve such “distant”
invariants into the solution vector.

1.2.3.2 Involving Distant Invariants

Let y and z be T-invariants. We say that z is a distant invariant for y if z can produce tokens in a place
connected to y. This can be written formally as follows.

Definition 1.8 (Distant invariant). The T-invariant z is a distant invariant for the T-invariant
y if a place p and transitions t1, t2 exist with y(t1) > 0, z(t2) > 0, ((t1, p) ∈ E ∨ (p, t1) ∈ E),
w+(p, t2)− w−(p, t2) > 0 and y(t2) = 0.

The definition states that y includes t1, z includes t2 and t1 is connected to a place p, where the
firing of t2 increases the number of tokens. This way, z can “borrow” tokens for y. The additional
criterion y(t2) = 0 is needed to ensure that we do not produce tokens for y by itself. In the example
in Figure 1.11, {t3, t4} is a distant invariant for {t1, t2} because t3 can produce tokens in p2, which is
connected to t1 (and also to t2).

29

1. Extensions to the CEGAR Approach on Petri Nets

When a transition in the remainder could not fire, the original algorithm tried to increase the token
count on its input places. Our definition of distant invariants generalizes this concept in the following
way. When a partial solution is skipped by the T-invariant filtering optimization, it means that a T-
invariant was fired, but could not “lend” enough tokens to enable a transition in the remainder. The
basic idea of involving distant invariants is to try to increase the token count in any place connected
to the filtered invariant. If some tokens can be produced, the filtered invariant will then be able to
transfer them indirectly to the place that lacks tokens. To achieve this, two main issues have to be
addressed:

• Calculating the number of tokens to be produced for the invariant that was filtered.
• Avoiding non-termination if the distant invariant cannot help and would be added again.

Number of tokens. Estimating the required number of tokens is a hard problem, since the sum
of the tokens in the places of a T-invariant may change during firing. Over-estimation can also be
a problem: the final marking of the invariant may not be the “best” state regarding the number of
tokens. Therefore, we produce only one token at a time and repeat this process if it was not enough.

Termination criterion. When a distant invariant does not help, there are two possible cases. The
distant invariant z could (1) not lend any tokens to the filtered invariant y or (2) it could lend some,
but not enough to enable a transition in the remainder.

The first case means that not only y lacks tokens, but z as well. Thus, we can now apply our
strategy again, i.e. involving a distant invariant for y + z. This way, we form a “chain” of distant
invariants, which is defined formally as follows.

Definition 1.9 (Chain of distant invariants). Let y1, y2, . . . , yn be T-invariants. We say that
y1+y2+. . .+yn is a chain of distant invariants if yi+1 is a distant invariant for yi (for 1 ≤ i < n).
A subchain of a chain y1 + y2 + . . .+ yn is a chain y1 + y2 + . . .+ yk, with k ≤ n.

The definition of distant invariants ensures termination for such chains since the newly involved
distant invariant must have at least one transition that is not included in the previous ones, and the
number of transitions in a Petri net is finite.

The second case indicates that z could lend some tokens, but not enough. Therefore, we can
involve distant invariants again for y. If z is the only distant invariant for y, this simply results in
adding z again, but in general, any distant invariant can be involved. However, if y = y1+y2+. . .+yn
is a chain, this would only produce tokens in places connected to yn. Thus, we have to involve a distant
invariant for every subchain in order to transfer the tokens to the originally filtered invariant (y1).

Our new ideas above are formulated in Algorithm 1.9. The input of the algorithm is a partial
solution ps ′ that was skipped due to ps and the initial markingm0. Partial solutions are extended to
store a chain of distant invariants (denoted by chainof), which is initially 0 (empty).

At first, we compute the difference between the solution vectors of ps and ps ′, we initialize the list
of constraints with the constraints of ps ′, and calculate the number of better intermediate markings
nb.12 The following two cases are possible.

• If the chain of ps is not empty, some distant invariants were already involved. If there are
better intermediate markings (nb > 0), then these invariants helped (but not enough) to enable
a transition in the remainder. In this case, we can involve them again, so the chain of ps ′ is the
same as in ps , and we involve a distant invariant for every subchain.

12Better intermediate markings were already computed when the partial solution ps ′ was skipped (see main loop in
Section 1.1.4.9). In the implementation, we cache their number (nb) along with ps ′ to avoid double calculation.

30

1.2. Extensions

• Otherwise, we extend the chain of ps with z and involve distant invariants only for the whole
chain. However, we have to first check if z is really an extension to the chain of ps , since ps ′
can be a solution obtained by the original increment constraints.

Algorithm 1.9: Get new solution by involving distant invariants.
input : ps ′: Partial solution skipped

ps : Partial solution that caused skipping ps ′
m0: Initial marking

output: x: New solution vector (if found) by involving distant invariants
1 z := difference invariant between ps and ps ′

2 C∗ := constraints of ps ′
3 nb := |BetterIntermediate(ps ′,m0)| ○ Algorithm 1.6
4 if chainof(ps) ̸= 0 and nb > 0 then

5 chainof(ps ′) := chainof(ps)
6 for each subchain of chainof(ps ′) do
7 C∗ := C∗∪ {constraint to involve a distant invariant for the subchain}
8 else if z is a distant invariant for chainof(ps) or chainof(ps) = 0 then
9 chainof(ps ′) := chainof(ps) + z

10 C∗ := C∗∪ {constraint to involve a distant invariant for chainof(ps ′)}
11 x := solve the state equation with C∗

12 return x

Finding a constraint to involve a distant invariant for a chain (or subchain) y is quite straightfor-
ward. We get the places P ′ ⊆ P connected to the transitions of y, and we create a constraint using the
third step of the increment constraint generating heuristic (Algorithm 1.4) to produce a token (n = 1)
in these places. If no constraint can be found, the algorithm returns no new solution. Otherwise, we
solve the state equation extended with C∗ and return the solution (if found). If there are multiple
distant invariants for y, all of them will be found by using jump constraints in the algorithm.

Example. This new strategy can solve the example in Figure 1.11 trivially. As a complex example, con-
sider the Petri netPN in Figure 1.12 with the reachability problem (1, 1, 0, 0, 2) ∈ R(PN , (0, 1, 0, 0, 2)),
i.e. producing a token in p0. The minimal solution is to fire t0, but it is not enabled. Thus, the T-invariant
{t1, t2} is added twice in order to get two additional tokens in p1. This invariant can fire, but it does
not help to get closer to enabling t0, so the partial solution is skipped without any better intermediate
marking. At this point, our new algorithm tries to produce a token in any of the places connected to
{t1, t2}, i.e. p1 and p2 by distant invariants. Therefore, the T-invariant {t3, t4} is added once to the new
solution. This invariant can also fire but does not help to enable t0. The partial solution is skipped, and
since {t3, t4} is a distant invariant for {t1, t2}, the algorithm now tries to produce a token in places
connected to the chain {t1, t2} ∪ {t3, t4}, i.e. in p1, p2, and p3. This implies that the invariant {t5, t6}
is added once. Firing this invariant does not enable t0, but yields an extra token in p1, which is a better
intermediate marking. Thus, the partial solution is skipped but the algorithm now tries to involve distant
invariants for every subchain, namely for {t1, t2} and {t1, t2, t3, t4}, resulting in the addition of {t3, t4}
and {t5, t6}. The solution vector is now (1, 2, 2, 2, 2, 2, 2), which can be realized by the firing sequence
t5t5t3t3t1t1t0t2t2t4t4t6t6.

31

1. Extensions to the CEGAR Approach on Petri Nets

p0 p1 p2 p3 p4t0

t1

t2

t3

t4

t5

t6

3
3

Figure 1.12: A complex example where distant invariants are discovered in multiple iterations.

Limitations. Although our new approach can solve a new range of problems, it also has some
limitations in giving conclusive answers.

p0 p1 p2t0

t1

t2

t3

t4

2
2 2

2

(a) Example on inconclusive answer.

p0 p1 p2

p3p4p5

t0

t1

t2

t3

t4

2
2 2

2

(b) Example on potential non-termination.

Figure 1.13: Example nets illustrating the limitations of distant invariants.

Example. Consider the Petri net PN in Figure 1.13a with the reachability problem (1, 1, 0) ∈
R(PN , (0, 1, 0)), i.e. producing a token in p0. The minimal solution is firing t0, which is not enabled.
Thus, the T-invariant {t1, t2} is added once in order to get an additional token in p1. This invariant can
fire, but it does not help to get closer to enabling t0, so the partial solution is filtered. At this point the
algorithm tries to produce tokens for {t1, t2} using distant invariants, which implies adding {t3, t4} once.
This invariant can fire, lending a token in p2. However, t1 requires two tokens to fire and produce one
in p1. This partial solution is also filtered, and there are no better intermediate markings since we only
count the tokens in places connected to the disabled transition t0, which is p1. The algorithm terminates
at this point, leaving the problem inconclusive.

A trivial idea for this example would be to extend the definition of better intermediate markings
(Definition 1.6) to count tokens not only in places connected to the transition that cannot fire but in
places connected to the filtered T-invariant as well. This can be formalized as follows. Let ps = (C, x+
y, σ, r) be a partial solution that was skipped due to the invariant y. Suppose that we obtained ps ′ =
(C′, x+y+z, σ′, r) by involving the distant invariant z for y, which could not enable any transition in
the remainder, thus ps ′ is skipped as well. Furthermore, suppose that no better intermediate marking
was found using Definition 1.6 (as in the example in Figure 1.13a). Given a partial solution ps and
a place p let max(ps, p) be max(m(p)) during firing σ of ps from the initial marking m0. Then the
definition of better intermediate markings can be generalized in the following way.

Definition 1.10. Given the partial solutions ps and ps ′ as described above, an intermediate
markingmi of σ′ is better than the final marking m̂ if Definition 1.6 holds or a transition t with
y(t) > 0 and a place p with (p, t) ∈ E ∨ (t, p) ∈ E exists for whichmi(p) > max(ps, p) holds.

32

1.2. Extensions

The generalized definition states that the intermediate marking is also considered better if there
is a place connected to the filtered T-invariant, which contains more tokens than in any marking in
the firing sequence of the previous partial solution. If a better intermediate marking exists for ps ′
using this definition, then we can involve z again. However, this definition would often lead to non-
termination since the filtered T-invariant (y) is already enabled (otherwise, it would not have been
filtered). Thus, we cannot give an upper bound on the number of tokens in p, as opposed to our original
definition, where we produce tokens in p until the transition that is disabled by p gets enabled.

Example. Consider the Petri net PN in Figure 1.13b with the reachability problem (1, 1, 0, 0, 0, 1) ∈
R(PN , (0, 1, 0, 1, 0, 0)), i.e. producing a token in p0 and moving the token from p3 to p5. This net works
similarly to the net in Figure 1.13a, but occurrences of the transitions t3, t4, and t1 can only appear in
this order, due to the upper part (places p3, p4, p5) of the net. This makes the target marking unreachable.
As in the previous example, first {t1, t2}, then {t3, t4} is added. Suppose now, that we consider it a better
intermediate marking when t3 produced a token in p2. This implies that {t3, t4} is added again. Now
t3 can fire two times, producing two tokens in p2. There are two possible sequels. If t1 fires, it produces
an extra token in p1 and enables t0. However, the extra tokens must be consumed in order to reach the
final marking, but t4 cannot fire after t1. The search terminates on this path since no more solutions can
be found. The second case is that t4 fires, which consumes the tokens from p2 so t1 cannot transfer them
to p1. Thus, t0 is still not enabled, but we had a better intermediate state since we had two tokens in p2.
Therefore, {t3, t4} is added again and this process repeats avoiding termination.

The examples in Figure 1.13 show that the generalized definition (Definition 1.10) may help to
decide reachability for some instances, but may also yield non-termination.

Remark. Distant invariants are automatically computed and added to the solution vector on the
fly. However, in principle, it would be possible to compute and express them as a semi-linear space.
Given a Petri net, all the (minimal) T-invariants can be calculated [MS82; CU05], and then for a given
T-invariant x, Definition 1.8 can be transitively applied to find the (minimal) distant invariants. For
example, if x and y are connected, and y and z are also, then y and y+z (and their linear combinations
k1y+k2(y+z)) are distant invariants for x. Considering all distant invariants, they form a semi-linear
set by taking the union of the linear spaces of distant invariants for each individual T-invariant.

1.2.3.3 New Filtering Criterion

When a partial solution is skipped using the T-invariant filtering optimization (Section 1.1.4.8), we
may obtain new solutions from it through intermediate markings or distant invariants. This yields a
new branch in the search space, which can also lead to non-termination.

There are special cases where T-invariants can either fire or not, both being a maximal firing
sequence. As an example, consider the Petri net in Figure 1.12 and suppose that t1, t2, t3, and t4 each
has to fire once. A possible maximal firing sequence is t2t4t3t1, but t2t1 is also maximal, since neither
t3 nor t4 is enabled afterwards. When such invariants exist, it is possible that the following two partial
solutions are obtained from ps = (C, x, σ, r) after adding the invariant y:

• ps ′ = (C′, x+ y, σ′, r), with ℘(σ′) = ℘(σ) + y, and
• ps ′′ = (C′, x+ y, σ, r + y).
In the first case, the invariant was fired (i.e. added to the firing sequence), while in the second

case, it was not fired (i.e. added to the remainder). The first case can be detected by the T-invariant
filtering optimization. However, we found that the second case can also lead to non-termination if
there are at least two T-invariants with this property.

33

1. Extensions to the CEGAR Approach on Petri Nets

To overcome this problem, we detect when a T-invariant is added to the remainder, i.e. we get
ps ′′ = (C′, x + y, σ, r + y) from ps = (C, x, σ, r). However, ps ′′ cannot be filtered immediately
because the remainder is different, so the abstraction refinement may add new invariants that can
help. We only skip ps ′′ if ps was omitted by the original T-invariant filtering optimization, which also
means that ps ′′ was obtained through intermediate markings or distant invariants. This approach is
illustrated by Algorithm 1.10.

Algorithm 1.10: Check if a part. sol. can be filtered based on T-invariants in the remainder.
input : ps ′′ = (C′′, x′′, σ′′, r′′): Partial solution to be checked
output: (skip or no skip, ps∗): Result and the other part. sol. that caused skipping (if exists)

1 foreach solution vector x from ancestors of ps ′′ do
2 foreach partial solution ps∗ = (C, x, σ, r) of x do

3 (result, _) := FilterTInv(ps∗) ○ Algorithm 1.5
4 if ps∗ ̸= ps ′′ and ℘(σ) = ℘(σ′′) and r′′ − r is T-inv. and result is skip then

5 return (skip, ps∗)
6 return (no skip, ps ′′)

1.2.4 Hybrid Search

As alreadymentioned in Section 1.1.4, the algorithm ofWimmel andWolf [WW11] traverses the semi-
linear solution space of the state equation. At each non-realizable solution, multiple (jump and/or
increment) constraints can be applied, each yielding a new path in the solution space. However, the
authors did not publish the strategy for the solution space traversal [WW11]. An overview pseudo-
code was published later [WW12] suggesting an ordering of solutions based on the sum of their ele-
ments. In this section we present three different search strategies: depth-first search (Section 1.2.4.1),
breadth-first search (Section 1.2.4.2) and our new approach, a hybrid strategy (Section 1.2.4.3), which
combines the advantages of DFS and BFS. Measurement results supporting our statements in this
section can be found in Section 1.4.3.

1.2.4.1 Depth-First Search

Depth-first search (DFS) can be very effective regarding memory usage and computation time as well.
It only stores one path of the solution space in memory at a time for backtracking purposes, and it
has a fast convergence if several invariants have to be added to reach a realizable solution. However,
DFS has some disadvantages as well:

• It may not find the minimal solution by choosing a path, which contains a solution but not the
minimal one.

• It may fail to terminate in an infinite solution space by choosing a path, where T-invariants can
be added infinitely many times without finding a realizable solution.

The T-invariant filtering optimization (Section 1.1.4.8) and our new filtering criterion (Sec-
tion 1.2.3.3) can cut the search space, but do not always detect infinite loops. We tried to give stronger
criteria for cutting, but then realizable solutions were lost, reducing the set of decidable problems.

34

1.2. Extensions

1.2.4.2 Breadth-First Search

Due to the problems of DFS, we implemented a breadth-first search (BFS) version of the algorithm
as well. The number of base solutions can grow exponentially, but it is always finite, so we still use
DFS between the base solutions and only use BFS in the linear space of invariants. As opposed to
DFS, it is less efficient but always finds the minimal solution if the target marking is reachable. When
the target marking is not reachable, BFS may fail to terminate in an infinite solution space. The T-
invariant filtering optimization can prevent this in some cases and can also make the computational
time shorter.

1.2.4.3 Hybrid Search

We also developed a new, hybrid search strategy, which combines the advantages of DFS and BFS. We
traverse the base solutions using DFS as previously. When exploring the invariant space over a base
solution our main strategy is DFS, but with a little BFS-like extension: at each solution x, we generate
all partial solutions belonging to x (instead of continuing the search with the first one) and filter them
based on a partial order.

Ordering of partial solutions. We define an ordering over vectors and partial solutions as follows.

Definition 1.11 (Ordering of vectors). A vector x is less than a vector y (denoted by x < y),
if and only if x(i) ≤ y(i) for each index i and x ̸= y.

Definition 1.12 (Ordering of partial solutions). A partial solution ps1 = (C, x, σ1, r1) is
less than a partial solution ps2 = (C, x, σ2, r2) (denoted by ps1 < ps2), if and only if r2 < r1.

A partial solution ps1 is less than a partial solution ps2 if the remainder r2 is less than r1. This
means that ps2 is closer to realization, since every transition fired in the sequence of ps1 was also
fired in ps2, but ps2 may have more fired transitions. Note that this is a partial order, since partial
solutions ps1, ps2 may exist with ps1 ≮ ps2 and ps2 ≮ ps1, e.g. if r1 = (1, 0) and r2 = (0, 1).
Furthermore, the partial order is only defined over partial solutions belonging to the same solution
vector x (and constraints C). This is sufficient, because – as described in the following – we will only
compare such partial solutions.

Filtering partial solutions. For our filtering criterion, we define maximal and minimal partial
solutions with respect to a given solution vector x as follows.

Definition 1.13 (Maximal partial solution). A partial solution ps of a solution x is maximal,
if and only if no other partial solution ps ′ exists for x with ps < ps ′.

Definition 1.14 (Minimal partial solution). A partial solution ps of a solution x is minimal,
if and only if no other partial solution ps ′ exists for x with ps ′ < ps .

The filtering criterion is quite simple; we only keep minimal and maximal partial solutions, as
illustrated by Algorithm 1.11 (see also the main loop in Section 1.1.4.9). Not that since the ordering is
partial, there can be multiple minimal and maximal partial solutions.

35

1. Extensions to the CEGAR Approach on Petri Nets

Algorithm 1.11: Filter a set of partial solutions based on partial order.
input : PSS : Set of partial solutions (belonging to same solution vector)
output: PSS ′ ⊆ PSS : A subset of partial solutions filtered by the partial order

1 return {ps ∈ PSS | ̸ ∃ps ′ ∈ PSS : ps < ps ′ ∨ ps ′ < ps}

We keep the maximal partial solution because it has a minimal remainder, i.e. it is the closest
to realizing the solution vector. Also, the T-invariant filtering optimization works well for maximal
partial solutions, since every T-invariant that can fire, must also fire (i.e. it is added to the firing
sequence). A minimal partial solution has a maximal remainder, i.e. not every enabled T-invariant
was fired. This yields a slower convergence to a realizable solution. However, since the remainder is
different from the remainder of the maximal partial solution, the abstraction refinement may involve
different invariants.

1.3 Implementation

We implemented the original algorithm [WW11] and our new contributions (Section 1.2) as a plug-in
for the PetriDotNet framework [c7]. Version 1.5 of PetriDotNet includes our new contributions
and is publicly available online.13 An overview of the architecture can be seen in Figure 1.14.

PetriDotNet CEGAR plug-in lpSolve
Petri net

Simulate result

ILP problem

Result

ILP problem

Result

...
Ax ≤ b
x ≥ 0

min(cTx)

Figure 1.14: Overview of the architecture. The CEGAR plug-in is implemented as an add-on to the
PetriDotNet framework. The plug-in relies on lpSolve to solve ILP queries.

PetriDotNet is an application for editing, simulating, and analyzing Petri nets. It has been ex-
tensively used in both education and industrial use cases [j2]. PetriDotNet is written in C# and
provides a base library, and a user interface for editing and simulating Petri nets. Analysis algorithms
(such as our CEGAR approach) are implemented via the plug-in interface of PetriDotNet.

When the CEGAR plug-in is started, it gets a reference to the current Petri net. The plug-in pro-
vides a graphical user interface to configure its parameters (e.g. target marking, optimizations). After
setting the parameters, the plug-in starts to explore the solution space using an ILP solver. We used
lpSolve14 for this purpose as it is freely available and provides an easily usable interface for C#. The
abstraction is refined in an iterative process, so the CEGAR plug-in may call the solver several times.
If a realizable solution is found, the firing sequence can be simulated visually in PetriDotNet.

13http://petridotnet.inf.mit.bme.hu/en/
14http://sourceforge.net/projects/lpsolve/, version 5.5

36

http://petridotnet.inf.mit.bme.hu/en/
http://sourceforge.net/projects/lpsolve/

1.4. Evaluation

1.4 Evaluation

In this section we evaluate our extensions and contributions presented before (Section 1.2). We for-
mulate the following three research questions for the evaluation.
RQ1 Howdoes the algorithm (including our new contributions) scale for Petri netswith an increasing

parameter (affecting the size of the structure and/or the state space)?
RQ2 How does our implementation perform compared to other tools and algorithms?
RQ3 How do the different search strategies perform compared to each other?

Table 1.1: Summary of the evaluation goals, the models used and the observed output.

Goal Models Observed

RQ1 Scalability with parameter MCC Runtime
RQ2 Comparison to other tools MCC, custom Runtime, decidability
RQ3 Comparison of search strategies Custom Runtime, cost

Table 1.1 summarizes the evaluation goals, the models used, and the observed output. In RQ1
(Section 1.4.1), we observe the runtime of the algorithmwith respect to an increasing parameter value
on models from the Model Checking Contest (MCC) [Kor+12]. The parameter can affect the size of
the net structure or the size of the state space. RQ2 (Section 1.4.2) compares our implementation to
other tools and algorithms on MCC models, including the original implementation [WW11] and a
variant of saturation [VDB11]. Besides runtime, the decidability of the problem is also observed here,
for which we also use further custommodels (related to distant invariants). Finally, RQ3 (Section 1.4.3)
uses custom models with large solution space to compare the different search strategies presented in
Section 1.2.4. Besides runtime, we also measure the cost of the solution (length of the firing sequence).

1.4.1 RQ1: Scalability

This section presents how the runtime of the algorithm scales for several models with a given param-
eter. For more details on the models, the interested reader is referred to the provided references and
Appendix B of [Dar14]. Measurements were executed on a laptop with Intel Core i5 M430 2.27 GHz
processor, 3 GB RAM, and Windows 7 x32. The algorithms used DFS for this research question.

Counter. The counter model [CZJ12] represents a simple n bit binary counter with |P | = n places
for each bit, |T | = n + 1 transitions, and |E ∪ I| = (n2 + 5n)/2 arcs for changing each bit and
resetting the whole counter. This model contains |I| = n inhibitor arcs. The problem solved by the
algorithm is to count from 0 to 2n−1, where n is the parameter. The results can be seen in Figure 1.15.
The runtime clearly scales exponentially with the parameter, which is not surprising, since the length
of the firing sequence solving the problem is also exponential of n.

Dining philosophers. The dining philosophers model [Dij71] is often used to illustrate the prob-
lems of parallel programming and mutual exclusion. There are n philosophers around a circular table.
Each philosopher has a plate, and there is a fork between every two plates. A philosopher can eat if
he has a fork in both hands. Since two neighbors share a fork, at most ⌊n/2⌋ philosophers can eat at
the same time. Each philosopher is either thinking or eating. If a philosopher gets hungry, he grabs
the forks next to him and eats. After eating, he puts back the forks. There is a possibility for deadlock

37

1. Extensions to the CEGAR Approach on Petri Nets

if all the philosophers get hungry at the same time, and they all grab one fork. In this case, none of
them can eat. Therefore, they will not put back the forks.

The problem solved by the algorithm is to reach a state where every second philosopher is eating.
The results can be seen in Figure 1.16. This model has a large structure (|P | = 6n, |T | = 4n, |E| =
14n). Therefore, finding the solution vector with the ILP solver is already a hard problem.

Parameter Runtime (s)

4 0.011
8 0.02
12 0.038
14 0.096
16 0.195
18 0.994
20 3.726

4 6 8 10 12 14 16 18 20

0

1

2

3

4

Parameter

Ru
nt
im

e
(s)

Figure 1.15: Measurement results for the counter model.

Parameter Runtime (s)

10 0.092
20 0.241
30 0.488
50 1.468
100 9.754
200 83.357 0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

Parameter

Ru
nt
im

e
(s)

Figure 1.16: Measurement results for the dining philosophers model.

FMS. The FMS model [CT93] represents a flexible manufacturing system where different types of
parts are assembled together. The parameter of this model is the number of parts to be assembled (n),
which determines the initial marking (n tokens in three places). The structure of the net is the same
for all n (|P | = 22, |T | = 20, |E| = 50). The results can be seen in Figure 1.17. Since the structure of
the net does not change, the size of the abstract model is constant. However, the length of the firing
sequence solving the problem grows linearly, which yields linear scalability for the runtime.

Kanban. The Kanban model [TTC96] represents a production scheduling method. The parameter
of this model determines the initial marking (n tokens in four places), and the structure is the same
(|P | = |T | = 16, |E| = 40) for all n. The results can be seen in Figure 1.18. Although the size of the
model does not change, the runtime scales exponentially with the parameter. We experienced that
the algorithm can find a realizable solution vector quickly. Still, it examines many partial solutions
before it finds a full solution, i.e. there are many dead-ends in the partial solution tree.

Slotted ring. The slotted ring model [Pas+94] represents a network protocol. The parameter is the
number of participants in the network. The results can be seen in Figure 1.19. Although the size of

38

1.4. Evaluation

the model grows (|P | = |T | = 8n, |E| = 24n), the ILP solver can handle this model well, and this
yields a polynomial runtime.

Parameter Runtime (s)

10 0.046
50 0.053
100 0.058
200 0.078
400 0.115
800 0.191
1600 0.321
3200 0.638
6400 1.28
12800 2.571 101 102 103 104

10−1

100

Parameter

Ru
nt
im

e
(s)

Figure 1.17: Measurement results for the FMS model.

Parameter Runtime (s)

10 0.352
13 1.147
16 3.424
19 8.04
22 17.51
25 35.061
28 64.947

10 12 14 16 18 20 22 24 26 28

0

20

40

60

Parameter

Ru
nt
im

e
(s)

Figure 1.18: Measurement results for the Kanban model.

Parameter Runtime (s)

10 0.207
20 0.571
30 1.206
35 1.585
50 3.461 10 15 20 25 30 35 40 45 50

0

1

2

3

Parameter

Ru
nt
im

e
(s)

Figure 1.19: Measurement results for the slotted ring model.

Discussion. One interesting topic to discuss is the effect of the new contributions on the scalabil-
ity of the algorithm. Reachability of predicates only modifies the initial set of constraints but has no
effect on basic reachability queries. The heuristics for inhibitor arcs are only applied when the net
does contain inhibitor arcs. When the net does not have inhibitor arcs, scalability is practically the
same (apart from the negligible time spent on checking if the net contains inhibitor arcs). The distant

39

1. Extensions to the CEGAR Approach on Petri Nets

invariants are applied when partial solutions are skipped, possibly continuing the search on an other-
wise terminated branch. While this can have a significant effect on scalability, it also helps to extend
the set of problems where a conclusive answer is given. In the implementation, distant invariants can
be turned on/off, so a potential trade-off can be to first run the algorithm without distant invariants,
and only apply them if the answer is inconclusive. Finally, we observed that for these examples the
hybrid search does not yield significant advantage so we performed standard DFS in this research
question, and created custom models with large solution spaces for RQ3 (Section 1.4.3).

1.4.2 RQ2: Comparison to Other Tools and Algorithms

We compared our algorithm in PetriDotNet to the implementation of Wimmel and Wolf [WW11],
which is called the Sara tool.15 We also compared our approach to a variant of the well-known
saturation-based model checking algorithm [CLS01] implemented in PetriDotNet [VDB11]. The
results can be seen in Table 1.2, where TO refers to a timeout of 600 seconds, ERR means a runtime
exception and NS implies that the algorithm terminated, but could not solve the problem. Note that
in order to check reachability, saturation actually builds up the whole state space (symbolically) and
could then answer additional queries.

The FMS model [CT93] represents a flexible manufacturing system. The parameter of the model
determines the size of the state space, while the structure of the net is fixed. The results show that our
algorithm outperforms both saturation and the Sara tool. The Kanban model [TTC96] illustrates a
production scheduling method. The parameter determines the size of the state space. We experienced
that our algorithm can find a realizable solution quickly, but it examines many partial solutions before
finding the full solution. The Dining philosophers model [Dij71] is often used to show the problems
of parallel programming and mutual exclusion. As the parameter grows, both the structure of the net
and the state space becomes larger. Saturation and Sara perform better for these models.

The Distantn models are built by us16 to test our new iteration strategy, which involves distant
invariants. The Distant1 and Distant3 models can also be seen in Figure 1.11 and 1.12 respectively.
After publishing our former proof of inconclusive answers [j1], we contacted Wimmel and Wolf, and
they also extended their implementation to be able to solve Distant1. However, the original algorithm
cannot solve complex examples of distant invariants. As the state spaces of these models are infinite,
saturation cannot handle these problems.

Due to the complexity of the models, further examination is required to determine how the struc-
ture and behavior of the models affect the performance of the algorithms and which algorithm is the
most effective for a given type of models. This is an interesting future research direction.

1.4.3 RQ3: Comparison of Search Strategies

The solution space (i.e. the abstract model) is usually small for the examples presented in Table 1.2,
so every search strategy has a similar performance. We created models17 with many T-invariants (i.e.
a large solution space) to evaluate the different search strategies. The results can be seen in Table 1.3,
where the cost corresponds to the size of the solution, i.e.

∑
t∈T x(t). The two parameters in the

model name determine the number of invariants. The asterisk indicates a different ordering of places
and transitions.

15http://www.service-technology.org/sara/index.html
16The Distantn models are available at http://inf.mit.bme.hu/en/pn2015.
17The Chain n+k models are available at http://inf.mit.bme.hu/en/pn2015.

40

http://www.service-technology.org/sara/index.html
http://inf.mit.bme.hu/en/pn2015
http://inf.mit.bme.hu/en/pn2015

1.4. Evaluation

Table 1.2: Comparison of the execution time (s) of our implementation to Sara and saturation. TO
indicates a timeout after 600 seconds, ERR means a runtime exception, NS denotes an inconclusive
answer, while “-” represents an unsupported case.

Model Our algo. Sara Saturation

FMS-10 0.041 0.001 0.06
FMS-50 0.048 0.018 1.09
FMS-100 0.056 0.059 8.03
FMS-200 0.071 0.278 69.7
FMS-400 0.105 0.868 TO
FMS-800 0.226 3.537 TO
FMS-1600 0.317 ERR TO
FMS-3200 0.65 ERR TO
FMS-6400 1.274 ERR TO
FMS-12800 2.54 ERR TO

Kanban-10 0.032 0.03 0.002
Kanban-13 1.074 0.05 0.003
Kanban-16 3.055 0.09 0.01
Kanban-19 7.128 0.134 0.03
Kanban-22 16.039 0.2 0.03
Kanban-25 31.181 0.268 0.05

Dphil-10 0.078 0.005 0.01
Dphil-20 0.204 0.012 0.02
Dphil-30 0.399 0.021 0.03
Dphil-50 1.156 0.037 0.03
Dphil-100 6.989 0.094 0.04
Dphil-200 67.603 0.33 0.05

Distant1 0.027 0.001 -
Distant2 0.068 NS -
Distant3 0.083 NS -
Distant4 0.116 NS -
Distant5 0.078 NS -
Distant6 0.063 NS -
Distant7 0.137 NS -

It is clear that DFS is more efficient than BFS regarding computational time. However, it often
fails to find the minimal solution. Our hybrid strategy often outperforms DFS while also being closer
to the minimal solution. The ordering of places and transitions can sometimes have a big impact on
the execution time. This is not surprising for DFS as it has to pick and explore subtrees in some order.
But this can also affect BFS and the hybrid search as in the implementation of Algorithm 1.1, if they
find a full solution, they stop immediately and do not explore the rest of the partial solutions.

41

1. Extensions to the CEGAR Approach on Petri Nets

Table 1.3: Measurement results for different search strategies. The cost is the size of the solution found.
TO refers to a timeout.

DFS BFS Hybrid
Model Time (s) Cost Time (s) Cost Time (s) Cost

Chain 1+2 0.04 7 0.055 7 0.039 7
Chain 1+3 0.095 13 0.828 13 0.1 13
Chain 1+4 0.291 21 85.24 21 0.288 21
Chain 1+4* 24.2 35 55.28 21 1.498 29
Chain 1+5 54.59 39 TO 31 56.36 39
Chain 2+2 0.076 11 0.277 11 0.074 11
Chain 2+3 0.197 19 12.768 19 0.288 23
Chain 2+3* 2.28 29 5.288 19 1.387 23

1.5 Related Work

Our contributions are direct extensions of the approach proposed by Wimmel and Wolf [WW11;
WW12], improving its expressive power, and widening the set of decidable problems.

Reachability analysis of Petri nets is often performed by standard model checking techniques,
including various decision diagrams [Pas+94; CT05; Kan+15; Amp+16], saturation [CLS01; VDB11;
Mol19], and partial order reduction [Val91;Wol18]. Such techniques can also be applied in the CEGAR
approach during the bounded exploration of the state space when looking for partial solutions for a
given solution vector. We apply a variant of the stubborn set partial order reduction method in our
approach [Sch99].

A key feature of Petri nets is the strong theory on their structural analysis [Wol19], which is less
prone to state space explosion. The CEGAR approach also applies structural techniques, namely the
state equation and T-invariants. Esparza and Melzer [EM00] verify safety properties (described by
predicates) by deriving a necessary criterion using the state equation. However, this criterion is often
not sufficient, so they use traps (a structural feature of Petri nets) to strengthen the conditions.

Structural techniques can also help state space-based approaches. Bønneland et al. [Bøn+18] use
the state equation to simplify temporal logic (CTL) formulas. Pastor et al. [PCP99] use place invariants
(P-invariants) for more efficient BDD encoding, while Karsten [Sch03] uses both P- and T-invariants
to store fewer states and in a more compact way. The LoLa tool [Wol18] uses the Petri net CEGAR
approach in its portfolio to answer reachability subqueries.

1.6 Summary and Future Work

In this thesis, we presented various extensions to the CEGAR approach on Petri nets, lifting its expres-
sive power and increasing the amount of conclusive answers. We implemented the original algorithm
and our extensions in the PetriDotNet framework and conducted an experimental evaluation. Re-
sults show that the new algorithms could outperform existing tools and approaches in terms of con-
clusive answers or expressive power on various inputs. My contributions are summarized as follows.

Thesis 1 I proposed extensions and improvements to the CEGAR-based reachability analysis
of Petri nets, lifting its expressive power and increasing the amount of conclusive answers.

42

1.6. Summary and Future Work

1.1 I generalized the algorithm to be able to solve reachability of predicates, where the target
state to be reached can be described with a set of linear constraints.

1.2 I extended the algorithm to be able to handle Petri nets with inhibitor arcs, raising its
expressive power.

1.3 I defined the concept of distant invariants and proposed a new iteration strategy, which
extended the kind of problems the algorithm could solve.

1.4 I defined a new ordering between partial solutions and a corresponding hybrid search
strategy that can speed up the convergence of the algorithm without losing solutions.

Joint work. András Vörös and Tamás Bartha were taking part in this research as my B.Sc. su-
pervisors. András Vörös gave the proof for inconclusive answers in his Ph.D. thesis [Vör18]. Zoltán
Mártonka, a fellow student, developed some optimizations, took part in the implementation, and was
responsible for the proof of unsoundness.

Publications. The extensions of inhibitor arcs and predicates were first presented at the SPLST
2013 conference [c4] and later further elaborated in the Acta Cybernetica journal [j1]. The distant
invariants were defined in the author’s B.Sc. thesis [a20] and then presented at the Petri Nets 2015
conference [c5] along with the hybrid search strategy. The implementation of PetriDotNet (includ-
ing the plug-in for the algorithms described in this thesis) was presented in a tool paper at the Petri
Nets 2016 conference [c7] and elaborated in more detail with applications in the Science of Computer
Programming journal [j2].

Applications. The CEGAR algorithm and our new contributions are implemented in PetriDot-
Net [c7], which is used in education and research projects at the Budapest University of Technology
and Economics. The tool and the algorithm were used during an internship at evopro18 for the mod-
eling and analysis of public transportation systems [j2]. Furthermore, PetriDotNet is used in edu-
cation as a demonstrator tool and for the homework at the Formal Methods course of the Budapest
University of Technology and Economics [c7; j2].

Future work. Despite the extensions, there are still problems that our algorithm cannot solve. A
significant result would be if either the algorithm could be extended to handle all cases, or the impos-
sibility of making the algorithm always being conclusive could be formally proven. We suspect that
a single forward search in the state space (that the algorithm currently does) might not be enough
for a conclusive answer in general. For example, the algorithm for deciding the reachability of vector
addition systems (equivalent to Petri nets) uses two semi-algorithms: one that tries to prove reach-
ability by enumerating finite sequences and another one that tries to prove non-reachability using
Presburger formulas [Ler11]. It would be interesting to extend the CEGAR approach with a similar
second component.

A further possible direction could also be to focus on decidable cases by determining subclasses of
Petri nets (e.g. by restricting the structure) where the algorithm is provably conclusive. For example,
one trivial class is the case of acyclic nets, where the solution to the state equation is not only a
necessary but also a sufficient condition for reachability. However, there are various other subclasses
that have been studied [EN94], but not in the context of CEGAR.

We only described distant invariants in the context of basic Petri nets. When using inhibitor arcs,
new situations arise. For example, a transition might be connected to two places by inhibitor arcs

18http://www.evopro.hu/en

43

http://www.evopro.hu/en

1. Extensions to the CEGAR Approach on Petri Nets

where an invariant is just moving a token back and forth between these two places as it does not know
that the token must be removed entirely from both of them. Similarly to getting tokens transitively,
tokens could also be removed indirectly with the means of distant invariants.

44

Chapter2

Efficient Strategies for CEGAR-based

Software Model Checking

This chapter presents our efficient strategies for CEGAR-based software model checking. We start by
introducing control-flow automata as a formal model of programs, and a generic CEGAR-based model
checking algorithm (Section 2.1). Then, we propose our contributions: a configurable explicit-value
analysis domain, an error-guided search strategy, a backward search-based interpolation method,
and a refinement approach using multiple counterexamples (Section 2.2). We briefly discuss the im-
plementation of the algorithms in Theta (Section 2.3) and perform an extensive experimental evalu-
ation (Section 2.4). Then, we put our work in context with related literature (Section 2.5). Finally, we
summarize the thesis, highlight the contributions, and suggest future directions (Section 2.6).

2.1 Background

This section introduces the preliminaries of this thesis. First, we present propositional and first-order
logic along with satisfiability modulo theories (Section 2.1.1). Then, we introduce control-flow au-
tomata as the modeling formalism used in our work (Section 2.1.2). Finally we describe the abstraction
and CEGAR-based framework (Section 2.1.3), in which we formalize our new algorithms (Section 2.2).

2.1.1 Mathematical Logic

Propositional logic. In propositional logic [BM07], a formula is composed of Boolean variables and
connectives (such as ¬,∨,∧). An interpretation I assigns each variable a truth value (true or false).
Given a formula φ and an interpretation I we say that I |= φ (I “models” φ) if φ evaluates to true
under I . A formula φ is satisfiable if an interpretation I exists with I |= φ.

Definition 2.1 (Boolean satisfiability problem). The Boolean satisfiability problem (SAT) is
to decide if a formula φ is satisfiable.

SAT was the first problem shown to be NP-complete [Coo71], meaning that no efficient algorithm is
believed to exist regarding worst-case complexity. However, modern SAT solvers with careful engi-
neering [Mos+01] can handle problems with up to tens of millions of variables and clauses [Jär+12] by
using algorithms like DPLL [DLL62] and CDCL [MS99]. Boolean satisfiability has tremendous impor-
tance in computer science, and in formal verification [VWM15] in particular. However, some problems
(e.g. reasoning about computer programs) can be expressed more naturally in richer languages.

45

2. Efficient Strategies for CEGAR-based Software Model Checking

First-order logic. First-order logic (FOL) [BM07] generalizes and extends propositional logic with
predicates, functions, and quantifiers. The satisfiability problem is defined similarly to propositional
logic: a formula φ is satisfiable if an interpretation I exists with I |= φ [BM07]. Church [Chu36]
and Turing [Tur36] proved that satisfiability is undecidable for FOL in the general case. However, in
practical applications, the problem is often decidable because there are different background theories,
which give particular meaning to predicates and functions, and restrict the signature and the usage
of quantifiers.

Satisfiabilitymodulo theories. While satisfiability in FOL is undecidable in general, it is decidable
in many practical first-order theories (or their fragments) [KS16]. A first-order theory T is defined by
(1) a signature ΣT , which is the set of constant, function and predicate symbols, (2) and a set of axioms
AT , providing meaning for the formulas [BM07]. A formula φ is satisfiable in T if an interpretation
I exists that satisfies the axioms AT and φ.

Definition 2.2 (Satisfiability modulo theories). The satisfiability modulo theories (SMT)
problem [BT18; BHM09] is to decide if a formula φ is satisfiable in a theory T (ΣT , AT).

There are various theories, including equality logic and uninterpreted symbols, linear/nonlinear
arithmetic over integers and reals, bitvectors, arrays, pointer logic, and so on [KS16; BFT16]. The
decidability and complexity of these theories have a high variance. The interested reader is referred
to [BM07] and [KS16] for details. Modern SMT solvers usually work by combining a SAT solver (for
the Boolean structure) and theory solvers (to check the consistency of literals provided by the SAT
solver) [Seb07].

The example programs in this thesis are usually based on quantifier-free linear arithmetic over
integers, but the algorithms presented can work with any theory in general, as long as there is a
decision procedure for it. Therefore, in the rest of the chapter, we will simply use FOL formulas in
general and assume that an appropriate theory (or their combination [NO79]) exists.

We use the following notations throughout the chapter. Given a set of variables V = {v1, v2, . . .}
let V ′ = {v′1, v′2, . . .} and V ⟨i⟩ = {v⟨i⟩1 , v

⟨i⟩
2 , . . .} represent the primed and indexed version of the

variables. We use V ′ to refer to successor states and V ⟨i⟩ for paths. Given an expression φ over V ∪
V ′, let φ⟨i⟩ denote the indexed expression obtained by replacing V and V ′ with V ⟨i⟩ and V ⟨i+1⟩

respectively in φ. For example, (x < y)⟨2⟩ ≡ x⟨2⟩ < y⟨2⟩ and (x′ = x+1)⟨2⟩ ≡ x⟨3⟩ = x⟨2⟩+1. Given
an expression φ let var(φ) denote the set of variables appearing in φ, e.g. var(x < y + 2) = {x, y}.

2.1.2 Control-Flow Automata

In our work we describe programs using control-flow automata (CFA), a graph-based formalism with
FOL variables and expressions [BHT07].

Definition 2.3 (Control-flow automata). A control-flow automaton is a tuple CFA =
(V,L, l0, E) where

• V = {v1, v2, . . . , vn} is a set of variables with domains Dv1 , Dv2 , . . . , Dvn ,
• L is a set of program locations modeling the program counter,
• l0 ∈ L is the initial program location,
• E ⊆ L×Ops × L is a set of directed edges representing the operations that are executed
when control flows from the source location to the target.

46

2.1. Background

Operations op ∈ Ops are either assignments or assumptions over the variables of the CFA. As-
signments have the form v := φ, where v ∈ V , φ is an expression of type Dv and var(φ) ⊆ V .
Assumptions have the form [ψ], where ψ is a predicate with var(ψ) ⊆ V . An operation op ∈ Ops
can also be regarded as a transition formula tran(op) over V ∪ V ′ defining its semantics. For an as-
signment operation, the transition formula is defined as tran(v := φ) ≡ v′ = φ ∧

∧
vi∈V \{v} v

′
i = vi

and for an assume operation it is tran([ψ]) ≡ ψ ∧
∧

v∈V v
′ = v. In other words, assignments change

a single variable and assumptions check a condition.1 By abusing the notation, we allow operations
op ∈ Ops to appear as FOL expressions by automatically replacing them with their semantics, i.e.
tran(op).

A concrete data state c ∈ Dv1 × . . . ×Dvn is a (many sorted) interpretation that assigns a value
c(v) = d ∈ Dv to each variable v ∈ V of its domain Dv . States with a prime (c′) or an index (c⟨i⟩)
assign values to V ′ or V ⟨i⟩ respectively. A concrete state (l, c) is a pair of a location l ∈ L and a
concrete data state. The set of initial states is {(l0, c) | c ∈ Dv1 × . . . ×Dvn} and a transition exists
between states (l, c) and (l′, c′) if an edge (l, op, l′) ∈ E exists with (c, c′) |= op.

A concrete path is a finite, alternating sequence of concrete states and operations σ = ((l1, c1),

op1, . . . , opn−1, (ln, cn)) if (li, opi, li+1) ∈ E for every 1 ≤ i < n, l1 = l0, and (c⟨1⟩1 , c
⟨2⟩
2 , . . . , c

⟨n⟩
n) |=∧

1≤i<n op
⟨i⟩
i , i.e. there is a sequence of edges starting from the initial location and the interpre-

tations satisfy the semantics of the operations. A concrete state (l, c) is reachable if a path σ =
((l1, c1), op1, . . . , opn−1, (ln, cn)) exists with l = ln and c = cn for some n.

Definition 2.4 (Verification task). A verification task is a pair (CFA, lE) of a CFA and a dis-
tinguished error location lE ∈ L. A verification task is safe if (lE , c) is not reachable for any c,
otherwise it is unsafe [Bey15].

Example. A simple program and its corresponding CFA can be seen in Figure 2.1. Basic elements of
structured programming (sequence, selection, repetition) are represented by the structure of the automa-
ton. The assertion in line 8 is mapped as a selection at location l7. If the assertion holds, the program
normally ends in the final location lF .2 Otherwise, failure is indicated with the error location lE .

2.1.3 Counterexample-Guided Abstraction Refinement (CEGAR)

Counterexample-Guided Abstraction Refinement (CEGAR) [Cla+03] is a verification algorithm that
automatically constructs and refines abstractions for a given model (Figure 2.2). First, an abstraction
algorithm computes an abstract reachability graph (ARG) [Bey+07] over some abstract domain with
respect to a given initial precision. The ARG is an over-approximation of the original state space,
and therefore if no abstract state with the error location is reachable, then the original model is also
safe [CGL94]. However, if an abstract counterexample (a path to an abstract state with the error
location) is found, the refinement algorithm checks whether it is feasible in the original model. A
feasible counterexample indicates that the original model is unsafe. Otherwise, the counterexample
is spurious, the precision is adjusted, and the ARG is pruned so that the same counterexample is not
encountered in the next iteration of the abstraction.

1Equality constraints do not appear in the implementation, but a single static assignment form [Cyt+91] is used where
a new symbol is only introduced when a variable is assigned to.

2Note that currently we are not considering termination, i.e. the final location lF does not carry any special meaning.

47

2. Efficient Strategies for CEGAR-based Software Model Checking

1 int x = 0;

2 int i = 0;

3 while (i < 100) {

4 if (x == 0) x = 1;

5 else x = 0;

6 i++;

7 }

8 assert(x <= 1);

(a) Example program with various ele-
ments of structured programming.

l0

l1

l2

l3

l4 l5

l6

l7

lF lE

x := 0

i := 0

[i < 100]

[i ≥ 100]

[x = 0] [x ̸= 0]

x := 1 x := 0

i := i+ 1

[x ≤ 1] [x > 1]

(b) CFA representation of the program. The distin-
guished location lE corresponds to an assertion failure.

Figure 2.1: A simple program and its corresponding CFA, illustrating the correspondence between
elements of structured programming (sequence, selection, repetition) and the structure of the CFA.

Abstraction RefinementARG

Safe Unsafe

Initial precision

Build Prune

Abstract counterexample

Refined precision

Figure 2.2: Overview of a generic counterexample-guided abstraction refinement (CEGAR) algorithm.

2.1.3.1 Abstraction

We define abstraction based on an abstract domain D, a set of precisions Π and a transfer function
T [BHT07].

Definition 2.5 (Abstract domain). An abstract domain is a tuple D = (S,⊤,⊥, ⊑, expr)
where

• S is a (possibly infinite) lattice of abstract states,
• ⊤ ∈ S is the top element,
• ⊥ ∈ S is the bottom element,
• ⊑ ⊆ S × S is a partial order conforming to the lattice and
• expr : S 7→ FOL is the expression function that maps an abstract state to its meaning (the
concrete data states it represents) using a FOL formula.

By abusing the notation we will allow abstract states s ∈ S to appear as FOL expressions by auto-
matically replacing them with their meaning, i.e. expr(s).

Elements π ∈ Π in the set of precisions define the current precision of the abstraction. The transfer
function T : S × Ops × Π 7→ 2S calculates the successors of an abstract state with respect to an
operation and a target precision.

48

2.1. Background

In the following, we introduce two domains, namely predicate abstraction and explicit-value ab-
straction, and their extension with the locations of the CFA.

Predicate abstraction. In Boolean predicate abstraction [BPR01; GS97] an abstract state s ∈ S is a
Boolean combination of FOL predicates. The top and bottom elements are ⊤ ≡ true and ⊥ ≡ false
respectively. The partial order corresponds to implication, i.e. s1 ⊑ s2 if s1 ⇒ s2 for s1, s2 ∈ S. The
expression function is the identity function as abstract states are formulas themselves, i.e. expr(s) = s.

A precision π ∈ Π is a set of FOL predicates that are currently tracked by the algorithm. The result
of the transfer function T (s, op, π) is the strongest Boolean combination of predicates in the precision
that is entailed by the source state s and the operation op. This can be calculated by assigning a fresh
propositional variable vi (also called activation literal) to each predicate pi ∈ π and enumerating
all satisfying assignments of the variables vi in the formula s ∧ op ∧

∧
pi∈π(vi ↔ p′i). For each

assignment, a conjunction of predicates is formed by taking predicates pi with positive variables and
their negations ¬pi with negative variables. The disjunction of all such conjunctions is the successor
state s′.

In Cartesian predicate abstraction [BPR01] an abstract state s ∈ S is a conjunction of FOL pred-
icates. Only the transfer function is defined differently than in Boolean predicate abstraction. The
transfer function yields the strongest conjunction of predicates from the precision π that is en-
tailed by the source state s and the operation op, i.e. T (s, op, π) =

∧
pi∈π{pi | s ∧ op ⇒ p′i} ∧∧

pi∈π{¬pi | s ∧ op ⇒ ¬p′i}.
Boolean predicate abstraction is more precise, e.g. Cartesian abstraction can only represent a ∧

¬b∨¬a∧ b as⊤. However, calculating successors is more efficient in the Cartesian version (linear in
the number of predicates) as opposed to Boolean (where it can grow exponentially).

Note that when the precision is empty (π = ∅) the transfer function reduces to a feasibility check-
ing of the formula s ∧ op, resulting in true or false (in both kind of abstractions).

We represent abstract states (in both kinds of abstractions) as FOL formulas. However, a possible
optimization would be to use binary decision diagrams (BDDs) for compact representation of states
and cheaper partial order checks [Cav+07].

Explicit-value abstraction. In explicit-value abstraction [BL13] an abstract state s ∈ S is an ab-
stract variable assignment, mapping each variable v ∈ V to an element from its domain extended
with top and bottom values, i.e. Dv ∪ {⊤Dv ,⊥Dv}. The top element ⊤ with ⊤(v) = ⊤Dv holds
no specific value for any v ∈ V (i.e. it represents an unknown value). The bottom element ⊥ with
⊥(v) = ⊥Dv means that no assignment is possible for any v ∈ V . The partial order ⊑ is defined
as s1 ⊑ s2 if s1(v) = s2(v) or s1(v) = ⊥Dv or s2(v) = ⊤Dv for each v ∈ V . The expression
function is expr(s) ≡ true if s = ⊤, expr(s) ≡ false if s(v) = ⊥Dv for any v ∈ V , otherwise
expr(s) ≡

∧
v∈V,s(v)̸=⊤Dv

v = s(v).
A precision π ∈ Π is a subset of the variables π ⊆ V that is currently tracked by the analysis.

The transfer function is given based on the strongest post-operator sp : S × Ops 7→ S, defining the
semantics of operations under abstract variable assignments. Given an abstract variable assignment
s ∈ S and an operation op ∈ Ops , let the abstract variable assignment ŝ = sp(s, op) denote the
result of executing op from s. If op is an assumption [ψ] then for all v ∈ V

ŝ(v) =

{
⊥Dv if s(u) = ⊥Du for any u ∈ V or ψ/s evaluates to false,

s(v) otherwise,

whereψ/s denotes the expression obtained by substituting all variables inψwith values from s, except
top and bottom values. Note that if ψ is only satisfiable with a single value for a variable v, then the

49

2. Efficient Strategies for CEGAR-based Software Model Checking

successor could be made more precise by setting ŝ(v) to this value [BL13]. This could be implemented
with heuristics3 for a few simple cases (e.g. [v = 1]), but a general solution requires a solver. In our
current work, we use a simple heuristic that can detect if an equality constraint has a variable on one
side and a literal on the other (e.g. [v = 1]) and later we also present a general, configurable solution
using a solver in Section 2.2.1. If op is an assignment w := φ then for all v ∈ V

ŝ(v) =

⊥Dv if s(u) = ⊥Du for any u ∈ V,
s(v) if v ̸= w,
c if v = w and φ/s evaluates to a literal c,
⊤Dv otherwise.

The transfer function T (s, op, π) = s′ is defined based on the strongest post-operator sp as fol-
lows. Let ŝ = sp(s, op), then s′(v) = ŝ(v) if v ∈ π and s′(v) = ⊤Dv otherwise, for each v ∈ V . In
other words, variables not included in the precision are omitted (replaced by top values).

Locations. Locations of the CFA are usually tracked explicitly regardless of the abstract domain
used [BHT07]. Given an abstract domain D = (S,⊤,⊥,⊑, expr) (e.g. predicate or explicit-value
abstraction), letDL = (SL,⊥L,⊑L, exprL) denote its extension with locations.4 Abstract states SL =
L × S are pairs of a location l ∈ L and a state s ∈ S. Instead of a single bottom element, there is a
set of bottom elements ⊥L = {(l,⊥) | l ∈ L} with each location and the bottom element ⊥ of D.
The partial order is defined as (l1, s1) ⊑L (l2, s2) iff l1 = l2 and s1 ⊑ s2. The expression function is
exprL ≡ expr, i.e. the location is not required in the expression as it is encoded in the CFA structure.

Precisions Π are also extended with a location, becoming a function ΠL : L 7→ Π that maps each
location to its precision. Algorithms can be configured to use a global precision, which maps each
location to the same precision, or a local precision, which can map different locations to different
precisions.5

The extended transfer function TL : SL × ΠL 7→ 2SL is defined as TL((l, s), πL) = {(l′, s′) |
(l, op, l′) ∈ E, s′ ∈ T (s, op, πL(l

′))}, i.e. (l′, s′) is a successor of (l, s) if there is an edge between l
and l′ with op and s′ is a successor of swith respect to the inner transfer function T and the precision
assigned to l′.

Abstract reachability graph. We represent the abstract state space using an abstract reachability
graph (ARG) [Bey+07].

Definition 2.6 (Abstract reachability graph). An abstract reachability graph is a tuple
ARG = (N,E,C) where

• N ⊆ SL is the set of nodes, each corresponding to an abstract state in some domain with
locations DL.

• E ⊆ N ×Ops×N is the set of directed edges between locations, labeled with operations.
An edge (l1, s1, op, l2, s2) ∈ E is present if (l2, s2) is a successor of (l1, s1) with op.

• C ⊆ N×N is the set of covered-by edges. A covered-by edge (l1, s1, l2, s2) ∈ C is present
if (l1, s1) ⊑L (l2, s2).

3The original paper [BL13] does not exactly mention such heuristics.
4Note that technicallyDL is not a domain as for example it has no top element. While it is possible to define a generic

product domain with locations [BHT07], we rather use locations as a “wrapper” to make our presentation simpler.
5In lazy abstraction [Hen+02] the precision can be different even for different instances of the same location.

50

2.1. Background

A node (l, s) ∈ N is expanded if all of its successors are included in the ARG with respect to the
transfer function; covered if it has an outgoing covered-by edge (l, s, l′, s′) ∈ C for some (l′, s′) ∈ N ;
and unsafe if l = lE . A node that is not expanded, covered, or unsafe is called unmarked. An ARG is
unsafe if there is at least one unsafe node and complete if no nodes are unmarked.

An abstract path σ = ((l1, s1), op1, (l2, s2), op2, . . . , opn−1, (ln, sn)) is an alternating sequence
of abstract states and operations. An abstract path is feasible if a corresponding concrete path
((l1, c1), op1, (l2, c2), op2, . . . , opn−1, (ln, cn)) exists, where each ci is mapped to si, i.e. ci |=
expr(si). In practice, this can be decided by querying an SMT solver with the formula6 s⟨1⟩1 ∧ op

⟨1⟩
1 ∧

s
⟨2⟩
2 ∧ op

⟨2⟩
2 ∧ . . .∧ op

⟨n−1⟩
n−1 ∧ s⟨n⟩n . A satisfying assignment to this formula corresponds to a concrete

path in the CFA.

Abstraction algorithm. Based on the concepts defined above, Algorithm 2.1 presents a basic pro-
cedure for abstraction (based on the CPA concept [BHT07]). The input of abstraction is a partially
constructed ARG (with possibly unmarked states), an error location lE , an abstract domain DL with
locations, a current precision πL and a transfer function TL. In the first iteration, the ARG only con-
tains the initial state N0 = {(l0,⊤)} and the precision πL is usually empty, i.e. no predicates or
variables are tracked (see the main loop of the algorithm in Section 2.1.3.3).

Algorithm 2.1: Abstraction algorithm.
input : ARG = (N,E,C): partially constructed abstract reachability graph

lE : error location
DL = (SL,⊥L,⊑L, exprL): abstract domain with locations
πL: current precision
TL: transfer function with locations

output: (safe or unsafe, ARG)
1 waitlist := unmarked nodes from N
2 while waitlist ̸= ∅ do

3 l, s := remove from waitlist
4 // Check if (l, s) is unsafe
5 if l = lE then

6 return (unsafe, ARG)
7 // Check if (l, s) can be covered
8 else if ∃(l′, s′) ∈ N : (l, s) ⊑L (l′, s′) then
9 C := C ∪ {(l, s, l′, s′)} // Add covered-by edge

10 // Otherwise (l, s) gets expanded
11 else

12 foreach (l′, s′) ∈ TL((l, s), πL) \ ⊥L do

13 waitlist := waitlist ∪ {(l′, s′)}
14 N := N ∪ {(l′, s′)} // Add new node
15 E := E ∪ {(l, s, op, l′, s′)} // Add successor edge
16 return (safe, ARG)

6In software model checking s1 is usually the top element because the program starts with all variables uninitialized.
However, in a more general setting, transition systems can have an arbitrary formula describing the initial states [c6].

51

2. Efficient Strategies for CEGAR-based Software Model Checking

The algorithm initializes a waitlist with all unmarked states. Then, it removes and processes states
from the waitlist based on some search strategy (e.g. breadth- or depth-first). If the current state
corresponds to the error location, the abstraction terminates with an unsafe result and an unsafe
ARG. Otherwise, we check if some already reached state covers the current with respect to the partial
order. If not, we calculate successors with the transfer function, making the node expanded.

If there are no more nodes to explore and the error location was not found, the abstraction con-
cludes with a safe result and a complete ARG. Note that due to its construction, the ARG without
covered-by edges is actually a tree (also called abstract reachability tree (ART) in some works).

Example. Figure 2.3a shows the ARG for the program in Figure 2.1 using predicate abstraction with a
single predicate πL(l) = {i < 100} for each location l ∈ L. Nodes are annotated with the location
and the predicate (or its negation). Edges are marked with the operations from the CFA. Dashed arrows
represent covered-by edges. It can be seen that an abstract state with the error location lE is reachable,
and thus abstraction concludes with an unsafe result. However, using a different set of predicates, e.g.
π′L(l) = {x ≤ 1} it would be able to prove the safety of the program.

Example. Figure 2.3b shows the ARG for the same program (Figure 2.1) using explicit-value abstraction
with only tracking the variable x, i.e. πL(l) = {x} for all l ∈ L. Nodes are annotated with the location
and the value of x. It can be seen that no abstract state is reachable in the ARG with the error location
lE , and therefore the original program is safe. Also note that tracking the loop variable i is not necessary,
hence reducing the size of the ARG.

2.1.3.2 Refinement

Refinement checks if a counterexample is feasible in the original program and if not, it adjusts the
precision and prunes the ARG so that in the next iteration, this spurious counterexample is eliminated.
Algorithm 2.2 presents the refinement procedure. The input is an unsafe ARG, the error location and
the current precision πL.

Feasibility check. Refinement starts with extracting a path σ = ((l1, s1), op1, (l2, s2), op2, . . . ,
opn−1, (ln, sn)) to the unsafe state (i.e. ln = lE) for feasibility checking. A feasible path corresponds
to a concrete path (in the original program), leading to the error location, which terminates refinement
with an unsafe result. In this case, the precision and the ARG is returned unmodified. Otherwise, an
interpolant [Cra57; McM05] is calculated from the infeasible path σ that holds information for the
further steps of refinement. In our work, we use binary or sequence interpolants.

Definition 2.7 (Binary interpolant). For a pair of inconsistent formulas A and B, an inter-
polant I is a formula such that

• A implies I ,
• I ∧B is unsatisfiable,
• var(I) ⊆ var(A) ∩ var(B).

A binary interpolant for an infeasible path σ can be calculated by defining A ≡ s
⟨1⟩
1 ∧ op

⟨1⟩
1 ∧ . . . ∧

op
⟨i−1⟩
i−1 ∧s⟨i⟩i andB ≡ op

⟨i⟩
i ∧s⟨i+1⟩

i+1 , where i corresponds to the longest prefix of σ that is still feasible.
Binary interpolants can be generalized to sequence interpolants [VG09] in the following way.

52

2.1. Background

l0

l1

l2, i < 100

l3, i < 100

l4, i < 100 l5, i < 100

l6, i < 100 l6, i < 100

l2

l3, i < 100 l7,¬(i < 100)

lF ,¬(i < 100) lE ,¬(i < 100)

x := 0

i := 0

[i < 100]

[x = 0] [x ̸= 0]

x := 1 x := 0

i := i+ 1

[i < 100]
[i ≥ 100]

[x ≤ 1] [x > 1]

(a) ARG for predicate abstraction with precision
πL(l) = {i < 100} for each l ∈ L. Using this precision
the ARG is unsafe because a state with lE is reachable.

l0, x = ⊤

l1, x = 0

l2, x = 0 l7, x = 0

lF , x = 0l3, x = 0

l4, x = 0

l6, x = 1

l2, x = 1 l7, x = 1

lF , x = 1l3, x = 1

l5, x = 1

l6, x = 0

l2, x = 0

x := 0

i := 0 [i ≥ 100]

[x ≤ 1][i < 100]

[x = 0]

x := 1

i := i+ 1
[i ≥ 100]

[x ≤ 1][i < 100]

[x ̸= 0]

x := 0

i := i+ 1

(b) ARG for explicit-value abstraction with precision
πL(l) = {x} for each l ∈ L. Using this precision, the
ARG is safe as no state with lE is reachable.

Figure 2.3: Example ARGs (with predicates and explicit values) for the program in Figure 2.1. Nodes
are represented by rectangles, successors by solid arrows and coverage by dashed arrows.

Definition 2.8 (Sequence interpolant). For a sequence of inconsistent formulas A1, . . . , An,
a sequence interpolant I0, . . . , In is a sequence of formulas such that

• I0 = true , In = false ,
• Ii ∧Ai+1 implies Ii+1 for 0 ≤ i < n,
• var(Ii) ⊆ (var(A1) ∪ . . . ∪ var(Ai)) ∩ (var(Ai+1 ∪ . . . ∪ var(An))) for 1 ≤ i < n.

A sequence interpolant for a path σ can be calculated by definingA1 ≡ s
⟨1⟩
1 andAi ≡ op

⟨i−1⟩
i−1 ∧s⟨i⟩i for

1 < i ≤ n. A binary interpolant Ik corresponding to a feasible prefix with length k can also be written
as a sequence interpolant where Ii ≡ true for i < k, Ii ≡ Ik for i = k and Ii ≡ false for i > k.
Note that each element Ii of the sequence corresponds to a single state (li, si) in the counterexample
σ, except I0. Therefore, I0 is dropped (holds no information), and variables V ⟨i⟩ are replaced with V
before using the formulas for refinement.

53

2. Efficient Strategies for CEGAR-based Software Model Checking

Algorithm 2.2: Refinement algorithm.
input : ARG = (N,E,C): unsafe abstract reachability graph

lE : error location
πL: current precision

output: (unsafe or spurious, π′L, ARG)
1 σ = ((l1, s1), op1, . . . , opn−1, (ln, sn)) := path to unsafe node (with lE) from ARG
2 // Feasibility check
3 if s

⟨1⟩
1 ∧ op

⟨1⟩
1 ∧ . . . ∧ op

⟨n−1⟩
n−1 ∧ s⟨n⟩n is satisfiable then return (unsafe, πL, ARG)

4 else

5 (I1, . . . , In) := get interpolant for σ
6 // Precision adjustment
7 (π1, . . . , πn) := map interpolant (I1, . . . , In) to precisions
8 π′L := πL
9 if πL is local then π′L(li) := π′L(li) ∪ πi for each li in σ

10 else π′L(l) := π′L(l) ∪
⋃

1≤i≤n πi for each l ∈ L

11 // Pruning
12 i := lowest index for which Ii /∈ {true, false}
13 Ni := all nodes in the subtree rooted at (li, si)
14 N := N \Ni // Prune nodes
15 E := {(n1, op, n2) ∈ E | n1 ̸∈ Ni ∧ n2 ̸∈ Ni} // Prune successor edges
16 C := {(n1, n2) ∈ C | n1 ̸∈ Ni ∧ n2 ̸∈ Ni} // Prune covered-by edges
17 return (spurious, π′L, ARG)

Precision adjustment. The precision is adjusted by first mapping the formulas of the interpolant
I1, I2, . . . , In to a sequence of new precisions π1, π2, . . . , πn (in line 7). In predicate abstraction the
formulas in the interpolant can simply be used as new predicates, i.e. πi = Ii, whereas in the explicit
domain variables of these formulas are extracted,7 i.e. πi = var(Ii). Then, the new precision π′L is
updated in the following way (in lines 8–10). If πL is local, then π′L(li) is calculated by joining the
new precision for each location li in the counterexample to its previous precision. Otherwise if πL is
global, then π′L(l) is a union of the old and new precisions for each location l ∈ L.

Pruning. The final step of the refinement is to prune the ARG back until the earliest state where
actual refinement occurred, i.e. where the precision changed (lazy abstraction [Hen+02]). Formally,
this is the node (li, si) with lowest index 1 ≤ i < n, for which Ii /∈ {true, false}. Pruning is done by
removing the subtree rooted at (li, si), including all the successor and covered-by edges associated
with the nodes of the subtree. Note that during this process, the parent of (li, si) becomes unmarked
(not expanded anymore), and nodes might also get unmarked due to the removal of covered-by edges.
Thus, the abstraction algorithm can continue constructing the ARG in the next iteration.

7Explicit-value analysis originally performs interpolation with the strongest post operator and constraint se-
quences [BL13]. We use an SMT-based approach to generalize our algorithms for transition systems [c6], where the transi-
tion relation is not limited to assignments and assumptions.

54

2.2. Algorithmic Improvements

2.1.3.3 CEGAR Loop

Algorithm 2.3 connects the abstraction and refinement methods (described by Algorithm 2.1 and 2.2
respectively) into a CEGAR loop (Figure 2.2). The input of the algorithm is an initial location l0, an
error location lE , an abstract domainDL with locations, an initial (usually empty) precision πL0 and
a transfer function TL.

Algorithm 2.3: CEGAR loop.
input : l0: initial location

lE : error location
DL = (SL,⊥L,⊑L, exprL): abstract domain with locations
πL0 : initial precision
TL: transfer function with locations

output: safe or unsafe
1 ARG := (N := (l0,⊤), E := ∅, C := ∅)
2 πL := πL0

3 while true do
4 result,ARG := Abstraction(ARG , lE , DL, πL, TL) ○ Algorithm 2.1
5 if result = safe then return safe
6 else

7 result, πL,ARG := Refinement(ARG , lE , πL) ○ Algorithm 2.2
8 if result = unsafe then return unsafe

First, an ARG is initialized with a single node corresponding to the initial location l0 and the top
element of the domain. The current precision πL is also set to the initial precision πL0 . Then the
algorithm iterates between performing abstraction and refinement until abstraction concludes with a
safe result or refinement confirms a real counterexample.

2.2 Algorithmic Improvements

In this section, we introduce various improvements related to both the abstraction and the refinement
phase of the CEGAR algorithm for software model checking. For abstraction, we define a modified
version of the explicit domain where a configurable number of successors can be enumerated (Sec-
tion 2.2.1). We also propose a new search strategy based on the syntactical distance from the error
location (Section 2.2.2). For refinement, we present a novel interpolation strategy based on backward
reachability (Section 2.2.3). Furthermore, we introduce a method to use multiple counterexamples for
refinement (Section 2.2.4).

2.2.1 Configurable Explicit Domain

Motivation. If an expression cannot be evaluated during successor computation in explicit-value
abstraction (e.g. due to top elements in abstract states), it is treated and propagated as the top element
(i.e. an arbitrary value) [BL13]. In many cases, this is desirable behavior, which can, for example, avoid
explicitly enumerating all possibilities for input variables that can indeed take any value from their
domain. However, it is also possible that this behavior prevents successful verification.

55

2. Efficient Strategies for CEGAR-based Software Model Checking

Example. Consider the program in Figure 2.4a. The program is safe, because 0 < x∧ x < 5 and x = 0
cannot hold at the same time. However, explicit-value abstraction fails to prove the safety of this program.
Even if x is tracked by the analysis, its value is unknown (x = ⊤) due to the nondeterministic assignment
in line 1. The assumption in line 2 is satisfiable, but with multiple values for x. Therefore, the algorithm
continues to line 3 with x = ⊤, where the assumption is again satisfiable (with x = 0), reaching the
assertion violation. At this point, refinement returns the same precision as there are no more variables to
be tracked. Thus, the same abstraction is built again, and the algorithm fails to prove safety.

1 int x = nondet ();

2 if (0 < x && x < 5) {

3 if (x == 0) {

4 assert(false);

5 }

6 }

(a) An example where the top value (in line 2) rep-
resents a finite amount of possibilities and thus,
could be enumerated.

1 int x = nondet ();

2 if (x != 0) {

3 if (x == 0) {

4 assert(false);

5 }

6 }

(b) An example where the top value (in line 2)
represents an infinite amount of possibilities and
thus, could not be enumerated.

Figure 2.4: Example programs where safety cannot be proven with explicit-value abstraction due to
unknown (top) values.

The problem is that this kind of abstraction can only learn facts like (0 < x ∧ x < 5) by enu-
merating all possibilities for x. This is actually feasible in this case since there are only 4 different
values (successors) for x, and from each of them, the assumption x = 0 is unsatisfiable, proving the
safety of the program. Similar examples include variables with finite domains (e.g. Booleans) or mod-
ulo operations (e.g. x := y mod 3). However, explicitly enumerating all values for a variable is often
impractical or even impossible due to the large (or infinite) number of possible values.

Example. Consider now the program in Figure 2.4b. This program is also safe because x ̸= 0 and x = 0
cannot hold at the same time. In this case, however, enumerating all values for x such that x ̸= 0 is
clearly impractical.8

Proposed approach. Motivated by the examples above, we propose an extension of the explicit-
value domain [BL13], where in case of a nondeterministic expression, we allow a limited number of
successors to be enumerated explicitly. If the predefined limit is exceeded, the algorithm works as
previously (treating the result as unknown). This way, we can still avoid state space explosion, but
can also solve certain problems that could not be handled previously with traditional explicit-value
analysis.

First, we define a modified version of the strongest post-operator (denoted by sp′), which distin-
guishes unknown evaluation results from top elements (introduced deliberately by the abstraction).

8In such cases x should not be tracked explicitly, but rather by predicate abstraction. This can be done statically by
analyzing variable roles [DRZ17] or dynamically by using a product abstraction [BHT08; BLW15a]. We have also worked
with a B.Sc. student on incorporating a dynamic technique into our framework [e18].

56

2.2. Algorithmic Improvements

Given an abstract variable assignment s ∈ S and an operation op ∈ Ops , let the resulting abstract
variable assignment ŝ = sp′(s, op) be defined as follows. If op is an assumption [ψ] then for all v ∈ V

ŝ(v) =

⊥Dv if s(u) = ⊥Du for any u ∈ V,
⊥Dv if ψ/s evaluates to false,

s(v) if ψ/s evaluates to true,

unknown otherwise.

If op is an assignment w := φ then for all v ∈ V

ŝ(v) =

⊥Dv if s(u) = ⊥Du for any u ∈ V,
s(v) if v ̸= w,
c if v = w and φ/s evaluates to a literal c,
unknown otherwise.

The difference between sp and sp′ is that if sp′ cannot evaluate an assumption or an assignment to
a literal then it is treated as a special unknown value. As described in the following, such unknown
values can only appear during the intermediate steps of successor computation. Therefore, no special
care is needed in the rest of the algorithm, but in principle they could be treated as top values.

Our extended, configurable transfer function Tk(s, op, π)works as follows (Algorithm 2.4). It first
uses sp′ to compute the successor abstract variable assignment of swith respect to op. If an unknown
value is encountered, we use an SMT solver to query satisfying assignments of the primed version
of variables in π for the expression s ∧ op with the given limit k. This is done with a feedback loop
in the following way. We first query a satisfying assignment for the formula s ∧ op and project it to
only include variables in π′. Then we add the negation of the assignment as a formula to the solver
and repeat this process until the formula becomes unsatisfiable or we exceed k. Note that if there are
multiple variables in π′, the limit k corresponds to all possible combinations and not to each individual
variable separately (which would allow |π′|k total assignments). For example, {(x = 1, y = 5), (x =
1, y = 6), (x = 2, y = 6)} counts as 3 assignments, even though both x and y can only take 2
different values.

Algorithm 2.4: Configurable transfer function Tk(s, op, π).
input : k: bound for explicitly enumerating successors

s: source state
op: operation
π: target precision

output: S′ ⊆ 2S : set of successor states
1 ŝ := sp′(s, op)
2 if ŝ contains any unknown value then
3 S′ := query at most k assignments of variables in π′ for the formula s ∧ op
4 if more than k assignments are possible then S′ := {sp(s, op)}
5 else S′ := {ŝ}
6 foreach s′ ∈ S′

do s′(v) := ⊤Dv for each v ∈ V \ π
7 return S′

If there are no more than k possible assignments, we treat all of them as new successor states as
if they were returned by sp′. Otherwise, if there are more than k assignments, we stop enumerating

57

2. Efficient Strategies for CEGAR-based Software Model Checking

them and fall back to using sp instead (which always yields a single successor). Finally, we perform
abstraction by setting the non-tracked variables v /∈ π to top elements in the successors (as it is done
in plain explicit-value abstraction). Note that as a special case k = 1 is similar to traditional explicit-
value analysis because each state has at most one successor. However, if an expression cannot be
evaluated (even using heuristics), we use an SMT solver, which makes the analysis more expensive,
but also more precise.

Discussion. The advantage of this method is that k can be tuned to reduce the number of unknown
values while still avoiding state space explosion. For the example in Figure 2.4a, any k with k ≥ 4
would work. Currently we experimented with different values for k from a fixed set of values (Sec-
tion 2.4.2.1). However, it would also be possible to use heuristics for automatically selecting or even
dynamically adjusting k during the analysis. Such heuristics could be based on the domain of variables
(e.g. Booleans, bounded integers) or the operations (e.g. modulo arithmetic). Furthermore, different k
values could be assigned to different locations l ∈ L in the CFA similarly to a local precision.

Note that since we are enumerating k successors in each step, after n steps, there could be kn
states in the worst case. However, this can only happen if there is a nondeterministic assignment for
the variables in each step. Otherwise, we know the exact values of each variable after the first step,
and we can evaluate every expression in the subsequent steps in exactly one way.

Operations in the CFA have their corresponding FOL expressions. Therefore, an SMT solver can be
used out-of-the-box to enumerate successors. However, our algorithm can work with other strategies
(known e.g. from explicit model checkers [Kan+15]) as long as they can enumerate successors for a
source state and an operation. Furthermore, since we only need the actual successors if there are no
more than k of them, as an optimization, heuristics could be developed that can tell if an expression
has more than k satisfying assignments without actually enumerating them.

2.2.2 Error Location-Based Search

Motivation. Recall that the abstract state space can be explored using different search strategies,
depending on how the ARG nodes in the waitlist are ordered (Algorithm 2.1). For example, breadth
and depth-first search (BFS and DFS) order nodes based on their depth ascending and descending,
respectively. These basic strategies, however, use no information from the input verification task.

Proposed approach. To focus the search more effectively, we propose a strategy based on the
syntactical distance from the error location in the control-flow automaton. Given a verification task
(CFA, lE) we define the distance dE : L 7→ N of each location l ∈ L to the error location lE as the
length of the shortest directed path from l to lE without considering the operations. Note that dE(l)
is an under-approximation of the actual distance between l and lE in the ARG since shorter paths are
not possible, but some operations might be infeasible, making the actual (feasible) distance longer.
The distances can be calculated (and stored for later queries) at the beginning of the analysis using
a backward breadth-first search from the error location.9 Then from each node (l, s) on the waitlist,
we simply remove one where dE(l) is minimal. However, some examples highlight that loops might
trick this approach as well. Therefore, we also experiment with metrics based on a weighted sum of
the distance to the error location and the depth of the current node in the ARG.

9Locations that are not reachable backward from the error location have a distance of infinity. However, we use a
variant [c8] of backward slicing [Wei81] as a preprocessing step to remove such locations.

58

2.2. Algorithmic Improvements

Example. Consider the CFA in Figure 2.5a. The distance to the error location lE is written next to each
location. For simplicity, operations are omitted from the edges. Furthermore, suppose that most of the
paths are actually feasible at the current level of abstraction, as otherwise, all search strategies perform
similarly. It can be seen that the number of paths to the error location scales exponentially with the
number of branches (if this diamond-shaped pattern is repeated). Therefore, a traditional BFS approach
would cause an exponential execution time. DFS would however, find the first path to lE quickly for
example by exploring l0, l1, l3, l4, l6, l7, lE in this order. The error location-based approach would act
similarly, as it first starts with l0, discovering its successors l1 and l2 both with a distance of 5. Then, by
picking, for example, l1, its only successor is l3 with a distance of 4. Therefore, the algorithm will pick l3
(with dE(l3) = 4) next instead of l2 (with dE(l2) = 5), similarly to DFS.

l0

6 l1

5

l2

5

l3

4 l4

3

l5

3

l6

2 l7

1

l8

1

lE

0

(a) Examplewhere BFSwould need an exponential
number of steps to reach lE .

l0

3 l1

2
l2

3

l3

4
l4

3
l5

2

l6

1
lE

0

(b) Example where DFS may unfold the loop l1, l2
many times.

Figure 2.5: Examples for error location-based search. Numbers next to the locations denote their dis-
tance form lE without considering operations.

Example. Consider now the CFA in Figure 2.5b. DFS can easily fail for this case if it is feasible to unfold
the loop l0, l1, l2, l1, l2, l1, l2 . . .many times. However, the error location-based search may also fail if the
edge from l1 to l6 is not feasible. In this case, the algorithm would also iterate between l1 and l2 (as long
as possible), since l3 on the other path has a greater distance.

Discussion. A possible way to overcome the problem of the above example is to use a combined
metric based on the depth of the current node in the ARG (denoted by dD) and the distance to the
error location. However, simply summing the distance and the depth causes each node in Figure 2.5a to
become equal in the ordering. Hence, it is reasonable to use aweightedmetricwD·dD(s, l)+wE ·dE(l).
Assigning a greater weight to dE can guide the search effectively based on the CFA, while a nonzero
weight for wD can help to avoid unfolding loops too many times. Currently, we experimented with
the following five different configurations for the weights (Section 2.4.2.2).

• (wE = 0, wD = 1) is a traditional breadth-first search.
• (wE = 0, wD = −1) is a traditional depth-first search.
• (wE = 1, wD = 0) considers only the distance from the error location.
• (wE = 2, wD = 1) combines the distance from the error with the depth (BFS), but with less
weight.

• (wE = 1, wD = 2) also uses depth and the distance from the error but is biased towards depth.
The first three configurations serve as a baseline, while the last two demonstrate combinations. A
possible future work could be to experiment with further values for the weights or with iteration
strategies known from abstract interpretation [Bou93].

59

2. Efficient Strategies for CEGAR-based Software Model Checking

Remark. One might wonder about the usefulness of this approach on safe verification tasks (where
no concrete state with lE is reachable). For such tasks, the intermediate iterations of CEGAR still
encounter (spurious) counterexamples. In this case, the error location-based search can help to find
these counterexamples and converge towards the final iteration faster.

2.2.3 Backward Binary Interpolation

Motivation. The binary interpolation algorithm presented in Section 2.1.3.2 defines the two formu-
lasA andB based on the longest feasible prefix. This yields an interpolant that refines the last abstract
state on the counterexample that can still be reached in the concrete program (starting from the initial
state). Therefore, from this point on, we will refer to this strategy as forward binary interpolation. We
observed that this strategy gives a poor performance in many cases (Section 2.4.2.3).

Example. Consider the abstract counterexample in Figure 2.6a. Rectangles are abstract states, with dots
representing concrete states mapped to them. The initial state is s1 and the erroneous state is s5. Edges
denote transitions in the concrete and abstract state space. Due to the existential property of abstraction,
an abstract transition exists between two abstract states if at least one concrete transition exists between
concrete states mapped to them [CGL94].

It can be seen that the longest feasible prefix is (s1, op1, s2, op2, s3, op3, s4). Forward binary inter-
polation would therefore set A ≡ s

⟨1⟩
1 ∧ op

⟨1⟩
1 ∧ . . . ∧ op

⟨3⟩
3 ∧ s

⟨4⟩
4 and B ≡ op

⟨4⟩
4 ∧ s

⟨5⟩
5 . This gives

an interpolant corresponding to s4, pruning the ARG back until s3. Continuing from s3 with the new
precision yields s41, s42, s51 and s52 (instead of s4 and s5), as seen in Figure 2.6b. However, s51 is still
reachable in the abstract state space (via s1, s2, s3, s41, s51), but the counterexample is only feasible until
s3 now. The algorithm needs to perform two additional refinements until s3 and s2 is refined, and the ARG
is pruned back to s1 (as seen in Figure 2.6c). All spurious behavior is now eliminated as neither s51 nor
s52 is reachable. However, this requires many iterations for the same counterexample and a potentially
larger abstract state space in each round due to the increasing precision.

s1

s2

s3

s4

s5

op1

op2

op3

op4

(a) Spurious counterexample.

s1

s2

s3

s41 s42

s51 s52

op1

op2

op3

op4

(b) After one step of forward bi-
nary interpolation.

s1

s21 s22

s31 s32

s41 s42

s51 s52

op1

op2

op3

op4

(c) Final result.

Figure 2.6: Spurious counterexample and its refinement. Rectangles are abstract states, dots represent
concrete states mapped to them. A darker background indicates reachable abstract states.

We observed situations as in the example above when a variable is assigned at a certain point of
the path (e.g, op1 ≡ x := 0), but only contradicts a guard later (e.g. op4 ≡ [x > 5]). Although the
path is feasible until the guard, in these cases, the root cause of the counterexample being spurious
traces back to the assignment of the variable.

60

2.2. Algorithmic Improvements

Proposed approach. To alleviate the previous problems, we define a novel refinement strategy that
is based on the longest feasible suffix of the counterexample. We call this strategy backward binary
interpolation as it starts with the erroneous state and progresses backward as long as the suffix is
feasible. Formally, let σ = (s1, op1, . . . , opn−1, sn) be an abstract counterexample and let 1 < i ≤ n
be the lowest index for which the suffix (si, opi, . . . , opn−1, sn) is feasible. Thenwe define a backward
binary interpolant asA ≡ s

⟨i⟩
i ∧op

⟨i⟩
i ∧ . . .∧op

⟨n−1⟩
n−1 ∧s⟨n⟩n andB ≡ s

⟨i−1⟩
i−1 ∧op

⟨i−1⟩
i−1 . In other words,

A encodes the feasible suffix, and B encodes the preceding transition that makes it infeasible. The
formula A∧B is unsatisfiable as otherwise, a longer feasible suffix would exist. Similarly to forward
binary interpolation, the only common variables inA andB correspond to si. Therefore, indexes can
be removed from the interpolant I .

Example. Consider Figure 2.6a again. The longest feasible suffix is (s2, op2, s3, op3, s4, op4, s5). Thus,
the interpolation formulas are A ≡ s

⟨2⟩
2 ∧ op

⟨2⟩
2 ∧ . . .∧ op

⟨4⟩
4 ∧ s⟨5⟩5 and B ≡ s

⟨1⟩
1 ∧ op

⟨1⟩
1 . The resulting

interpolant I corresponds to s2 and the ARG is pruned back until s1 (Figure 2.6c) in a single step (assuming
a global precision).

Discussion. Wemotivated backward binary interpolation by comparing it to forward interpolation
and showing that it can trace back the root cause in fewer steps. In software model checking, however,
sequence interpolation is the standard technique. Hence we also compare our backward interpolation
approach to sequence interpolation (Section 2.4.2.3). A potential advantage of backward interpolation
is that it can be more compact than sequence interpolation (which could yield a formula for each
location along the counterexample, making the algorithm prune a more substantial portion of the
state space). Backward search-based strategies also proved themselves efficient in the context of other
algorithms, such as Impact [Alb+14] or Newton [Die+17].

2.2.4 Multiple Refinements for a Counterexample

Motivation. Most approaches in the literature stop exploring the abstract state space and apply re-
finement as soon as the first counterexample is encountered. Although collecting more counterexam-
ples adds overhead to abstraction, better refinements may be possible as more information is available.
Altogether, this could reduce the number of iterations and increase the efficiency of the algorithm.

Proposed approach. We modified the abstraction algorithm (Algorithm 2.1) so that it does not re-
turn the first counterexample (by removing line 6), but keeps exploring the state space. The algorithm
can be configured (by adding a condition to the loop header in line 2) to stop after a given number of
erroneous states or to explore all of them.

If at least one of the counterexamples is feasible, then the algorithm can terminate with an unsafe
result. However, if all of them are infeasible, there are many possible ways to use the information for
refinement. We propose a technique where we first calculate a refinement for each counterexample
and derive a minimal set required to eliminate all spurious behavior. Then, we update the precision
and apply pruning based on this minimal set.

Our approach is formalized in Algorithm 2.5. First, we extract paths Σ leading to states with the
error location lE from the ARG. If any path σi ∈ Σ is feasible, then the algorithm terminates with
an unsafe result. Otherwise, we calculate an interpolant Itpi for each path σi. Given a path σi and
its corresponding interpolant Itpi, we can determine the first state sri ∈ σi of the path that actually
needs refinement (i.e. the first state where the interpolant is not true or false). These states correspond
to pruning points in the ARG.

61

2. Efficient Strategies for CEGAR-based Software Model Checking

Algorithm 2.5: Refinement algorithm for multiple counterexamples.
input : ARG = (N,E,C): unsafe abstract reachability graph

lE : error location
πL: current precision

output: (unsafe or spurious, π′L, ARG)
1 Σ = (σ1, . . . , σn) := extract paths to states with lE from ARG
2 // Feasibility check
3 if any path σi ∈ Σ is feasible then return (unsafe, πL, ARG)
4 else

5 π′L := πL
6 Itps = (Itp1, . . . , Itpn) := get interpolant for each σi ∈ Σ
7 Sr = (sr1 , . . . , srn) := calculate first refined state for each σi ∈ Σ
8 // Precision adjustment
9 foreach σi ∈ Σ do

10 if no state in Sr is a proper ancestor of sri in the ARG then

11 (πi1 , . . . , πik) := map interpolant Itpi = (Ii1 , . . . , Iik) to precisions
12 if πL is local then π′L(lij) := π′L(lij) ∪ πij for each location lij in σi
13 else π′L(l) := π′L(l) ∪

⋃
1≤j≤k πij for each l ∈ L

14 // Pruning
15 Ni := all nodes in the subtree rooted at sri
16 N := N \Ni // Prune nodes
17 E := {(n1, op, n2) ∈ E | n1 ̸∈ Ni ∧ n2 ̸∈ Ni} // Prune successor edges
18 C := {(n1, n2) ∈ C | n1 ̸∈ Ni ∧ n2 ̸∈ Ni} // Prune covered-by edges
19 return (spurious, π′L, ARG)

Then, we determine the minimal set of counterexamples to be refined in the following way. For
each path σi with its first state to be refined sri , we check if any other state in Sr is a proper ancestor10
of sri in the ARG. If such a state exists, it means that the other path shares its prefix with the currently
examined path, and will need refinement earlier. That refinement will add new predicates and prune
the ARG earlier, possibly eliminating the current counterexample as well. Therefore, the current path
is skipped for now (lazy refinement).

For each path that is not skipped, we map the interpolant to a new precision and join it to the old
one, taking into account whether the precision is local or global. Finally, we return a spurious result,
the new precision π′L, and the pruned ARG.

Example. Consider the ARG (without covered-by edges) in Figure 2.7. There are four counterexamples
σ1, . . . , σ4 in the ARG leading to the abstract states (s1, lE), . . . , (s4, lE). The first states to be refined
(sri) are denoted with a warning sign. In this example the minimal set of counterexamples is {σ2, σ3},
because sr2 and sr3 are proper ancestors of sr1 and sr4 respectively. Refining σ2 and σ3 will, therefore,
eliminate all spurious behavior from the current ARG. Note that in the next iteration (s1, lE) and (s4, lE)
might still be reached again if the predicates for σ2 and σ3 were not sufficient. In this case, these coun-
terexamples are eliminated in the next iteration.

10Proper ancestors of a node are its ancestors with respect to successor edges, excluding the node itself.

62

2.3. Implementation

sr2 sr3

sr1 é

(s2, lE)

 sr4

é

(s1, lE)

é

(s4, lE)é

(s3, lE)

Figure 2.7: Example for refinement based on multiple counterexamples. Counterexamples lead to
leaves (si, lE) and the first states to be refined are highlighted by sri .

Discussion. Our approach for multiple counterexamples can work with any refinement strategy.
In our current experiment (Section 2.4.2.4) we use sequence interpolation. However, it would even be
possible to use different strategies for the different counterexamples as opposed to existing approaches
that use multiple counterexamples (e.g. DAG interpolation [Alb15] or global refinement [Löw17]).

Currently, we have a single error location in the CFA, so each counterexample leads to the same
location on a different path. However, our approach does not rely on this and would work the same
way even if the collected counterexamples lead to different locations.

The presented algorithm handles all counterexamples in the solver separately by reusing existing
interpolation modules. A possible optimization would be to use the incremental API of SMT solvers
by pushing the first counterexample, performing the check and interpolation, and then popping only
back to the common prefix of the current and next counterexample, and so on.

2.3 Implementation

We implemented both the existing algorithms presented in the background (Section 2.1) and our new
contributions (Section 2.2) in the open source Theta framework11 [c9]. Theta is a generic, modular
and configurable framework, supporting the development and evaluation of CEGAR-based algorithms
for the reachability analysis of different formalisms. The main distinguishing feature of Theta is its
architecture that allows the definition and combination of different abstract domains, interpreters, and
strategies for abstraction and refinement, applied to models of various formalisms with frontends for
higher level languages. An overview of the architecture can be seen in Figure 2.8, where the new
contributions are marked with a filled background. The architecture follows the modular nature of
most modern model checkers [Kor+19]. Theta is written in Java 11.

Formalisms and language frontends. Formalisms are usually based on low-level mathemati-
cal representations such as annotated graphs and first-order logic expressions. Formalisms support
higher level languages by providing language frontends (consisting of a parser and possibly sim-
plifying reductions). Currently symbolic transition systems (STS) [c6], control-flow automata (CFA,
Section 2.1.2) and timed automata [TM17; TM18] are supported with frontends for higher level lan-
guages such as AIGER [Bie07; Cab+16], PLC codes [DFB15; Fer+15], C programs [c8] and Uppaal
XTA models [LPY97; TM18].

11https://github.com/FTSRG/theta (commit f32d3f9 was used for the evaluation)

63

https://github.com/FTSRG/theta
https://github.com/FTSRG/theta/commit/f32d3f9

2. Efficient Strategies for CEGAR-based Software Model Checking

SMT solver interface

Domains

Transfer function
ZoneExpl.Pred.

Initial function
ZoneExpl.Pred.

Precision
ZoneExpl.Pred.

State
ZoneExpl.Pred.

Analysis backend

Abstractor

Stop criterion
One All

Waitlist
ErrDFSBFS

Refiner

Trace checker
ZoneSeq.FW UCBW

M
ul
ti
ce
x.

Precision adjustment
ZoneExpl.Pred.

ARG

Interpreter State Action LTS

Formalisms and language frontends

XTA
LTSActionState

CFA
LTSActionState

STS
LTS

AIGER UPPAALC PLC

Figure 2.8: Overview of the architecture of Theta. The core of Theta is the analysis backend with
the abstract domains. It relies on the SMT solver interface as a backend and on an interpreter and
various formalisms and languages as frontends.

Interpreter. The interpreter layer wraps each formalism into a common interface. Each formalism
can define its own states, actions, and the labeled transition system (LTS), which determines the
enabled actions for a given state. The states of formalisms usually wrap states of abstract domains
with extra information. For example, CFA states add a location component to any abstract state, and
the CFA LTS returns statements of the outgoing edges as actions.

Domains. The core of the framework is the set of abstract domains with abstract states, precisions,
and initial and transfer functions. Currently the predicate, the explicit-value (Section 2.1.3.1) and the
zone [Alu99; TM17] domains are implemented. Our configurable explicit domain (Section 2.2.1) is
implemented as a variant of the explicit transfer function.

Analysis backend. Reachability analysis is performed by an abstraction refinement loop. As usual
for lazy abstraction methods [Hen+02], the central data structure is an abstract reachability graph
(ARG). The abstractor component constructs the ARG by expanding and covering nodes. It relies on
a waitlist to guide the traversal. Our error location-based search (Section 2.2.2) is implemented as a
strategy along BFS and DFS. The abstractor stops when all nodes have been expanded and covered,

64

2.4. Evaluation

or a given amount of unsafe nodes are found. By default, only one unsafe node is required to stop,
but our refinement based on multiple counterexamples (Section 2.2.4) explores all unsafe nodes.

The refiner component first checks the trace and extracts the reason of infeasibility. We imple-
mented our novel backward interpolation strategy (Section 2.2.3) along with forward and sequence
interpolation (Section 2.1.3.2), unsat cores [LMN15] and zone interpolation [TM17]. The second step
of refinement is the precision adjustment, which is done differently for each domain. Our refinement
based on multiple counterexamples (Section 2.2.4) is implemented within the refiner by calling trace
checking and precision adjustment and then merging the results for all counterexamples.

SMT solver interface. The framework provides a general SMT solver interface that supports in-
cremental solving, unsat cores, and the generation of binary and sequence interpolants. Currently,
the interface is implemented by z3 [MB08], but it can easily be extended with new solvers.

2.4 Evaluation

In this section, we evaluate the effectiveness and efficiency of our algorithmic contributions presented
before (Section 2.2) by conducting an experiment. First, we introduce our experiment plans along with
the research questions to be addressed (Section 2.4.1). Then, we present and discuss our results and
analyses for each research question in a separate subsection (Section 2.4.2). Finally, we compare our
implementation to other tools in order to provide a baseline for the research questions (Section 2.4.3).
The design and terminology of the experiment are based on the book of Wohlin et al. [Woh+12]. The
raw data, a detailed report, and instructions to reproduce our experiment are available in a supple-
mentary material [a22].12

2.4.1 Experiment Planning

The goal of our experiment is to evaluate the new contributions on a broad set of verification tasks
from diverse sources. In our experiment we execute various configurations of the CEGAR algorithm
on several input models.

2.4.1.1 Research Questions

We formulate a research question for the performance of each algorithmic contribution presented in
Section 2.2. We are mainly interested in two performance aspects: the number of verification tasks
solved within a given time limit per task (effectiveness) and the total execution time required (effi-
ciency). Other measured aspects include a more refined categorization of unsolved tasks (timeout,
out-of-memory, exception) and the peak memory consumption.
RQ1 How does the configurable explicit domain perform for increasing values of k compared to

traditional explicit-value analysis?
RQ2 How does the error location-based search perform for different weights (wD , wE) compared to

breadth- and depth-first search?
RQ3 How does backward binary interpolation perform compared to forward binary and sequence

interpolation?
RQ4 How does refinement based on multiple counterexamples perform compared to using only a

single one?
12The supplementary material contains six research questions RQ1, . . ., RQ6. In this dissertation we only present four

of them (RQ1, RQ2, RQ4 and RQ5) and they are re-numbered to be RQ1, RQ2, RQ3 and RQ4 respectively.

65

2. Efficient Strategies for CEGAR-based Software Model Checking

2.4.1.2 Objects

One of the distinguishing features of Theta is that it supports different kinds of models (e.g. control-
flow automata, transition systems, timed automata). An interpreter hides the differences between
these formalisms, so the algorithms presented in this thesis work for verification tasks from different
domains (e.g. software, hardware). There are some exceptions though: the configurable explicit do-
main (Section 2.2.1) requires statements and the error location-based search (Section 2.2.2) requires
locations. Therefore, these algorithms do not work for hardware models since those are encoded as
transition systems.

For the objects of the experiment, we use C programs from the Competition on Software Ver-
ification (SV-COMP) [Bey17], hardware models from the Hardware Model Checking Competition
(HWMCC) [Cab+16] and industrial programmable logic controller (PLC) software models from
CERN [DFB15; Fer+15; DBM19].

Table 2.1 gives an overview of the number of input models and verification tasks along with the
size and complexity metrics. We selected models from four categories of the 2018 edition13 of SV-
COMP that are currently supported by the limited14 C frontend of Theta [c8]. By applying backward
slicing [c8], we generate a separate verification task for each assertion. The category locks consists
of small (94-234 LoC) locking mechanisms with several assertions per model. The collection loops
includes small (9-70 LoC) programs focusing on loops. The ECA (event-condition-action) task set
contains larger (591-1669 LoC) event-driven reactive systems. The tasks in ssh-simplified describe
larger (557-713 LoC) client-server systems.

Table 2.1: Overview of the input verification tasks with the number of variables, locations, edges and
the cyclomatic complexity (CC). Ranges denote minimal and maximal numbers.

Source Category Models Tasks Vars Locs Edges CC

SV-COMP

Locks 13 143 4–32 9–40 10–57 3–23
Loops 59 105 1–11 4–26 3–33 2–19
ECA 3 180 9–30 302–1301 375–1516 73–231
ssh-simpl. 12 17 64–81 187–267 262–375 87–121

CERN PLC 6 90 1–596 8–4614 7–4782 4–188

HWMCC HWMCC 300 300 0–245278 inputs, 0–460501 latches, 0–4806245 gates

Total 393 835

We also experimented with industrial PLC software modules from CERN. These modules operate
in an infinite loop, where a formula (the property) is always checked at the end of the loop. The size
of these models is greatly varying from a few dozens of locations to a couple of thousands.

Furthermore, we picked all 300 models from the 2017 edition15 of HWMCC. These tasks are en-
coded as transition systems, describing circuits with inputs, logical gates, and latches. The metrics
reported in the table for the hardware models are after applying the cone of influence (COI) reduc-
tion [CGP99].

The majority of the CFA tasks (442) is expected to be safe, while the rest is unsafe (93). To the
best of our knowledge, the (300) hardware models do not have an expected result.

13https://sv-comp.sosy-lab.org/2018/
14Currently Theta does not support arrays, pointers, structs, and function inlining is limited to simple cases.
15http://fmv.jku.at/hwmcc17/

66

https://sv-comp.sosy-lab.org/2018/
http://fmv.jku.at/hwmcc17/

2.4. Evaluation

Due to slicing [c8], it is possible that different tasks corresponding to the same program will have
different models (i.e. CFA). Hence, we encode each task in a separate file, including the model (CFA)
and the property, and treat them as if they were different models. Therefore, from now on, we use the
terms “model” and “verification task” interchangeably.

2.4.1.3 Variables

The variables of our experiment are listed in Table 2.2, grouped into three main categories. Properties
of themodel and parameters of the algorithm configuration are independent variables, whereas output
metrics of the algorithm are dependent.

Table 2.2: Variables of the experiment.

Category Name Type Description

Model
(indep.)

Model String Unique name of the model (i.e. verification task).
Category Enum. Category of the model. Possible values: eca, hwmcc,

locks, loops, plc, ssh.

Config.
(indep.)

Domain Enum. Domain of the abstraction. Possible values: EXPL,
PRED_BOOL, PRED_CART.

MaxEnum Integer Maximal number of successors to enumerate in the ex-
plicit domain (k). Only applicable if Domain is EXPL.

PrecGranularity Enum. Granularity of the precision. Possible values: GLOBAL,
LOCAL.

Refinement Enum. Refinement strategy. Possible values: BW_BIN_ITP,
FW_BIN_ITP, MULTI_SEQ, SEQ_ITP.

Search Enum. Search strategy. Possible values: BFS, DFS, ERR, DFS_-
ERR, ERR_DFS.

Metrics
(dep.)

Succ Boolean Indicates whether the algorithm successfully provided a
correct result within the given resource limits.

Termination Enum. Indicates the termination reason. Possible values: suc-
cess, time, memory, exception.

Result Boolean Result of the algorithm, indicates whether the model is
safe according to the algorithm.

TimeMs Integer CPU time used by the algorithm (in milliseconds).
Memory Integer Peak memory consumption of the algorithm (in bytes).

Properties of the model.

• The variableModel represents the unique name of each model (verification task).
• Furthermore, models have a Category based on their origin.

Parameters of the algorithm.

• The variable Domain represents the abstract domain used. The values PRED_BOOL and
PRED_CART stand for Boolean and Cartesian predicate abstraction, while EXPL stands for
explicit-value analysis.

67

2. Efficient Strategies for CEGAR-based Software Model Checking

• The integer variable MaxEnum corresponds to the maximal number of successors allowed to
be enumerated (denoted by k) in our configurable explicit domain (Section 2.2.1). The value 0
represents k = ∞, i.e. there is no limit on the number of successors. Furthermore, the value 1∗
enumerates at most one successor without using an SMT solver16 (corresponding to traditional
explicit-value analysis [BL13]).

• The variable PrecGranularity represents the granularity of the precision. When the granularity
is LOCAL, a different precision can be assigned to each location, whereas GLOBAL granularity
means that the precision is the same for each location.

• The variable Refinement corresponds to the refinement strategy used. The values FW_BIN_-
ITP and SEQ_ITP represent traditional binary and sequence interpolation (Section 2.1.3.2). The
value BW_BIN_ITP is our novel backward search-based binary interpolation strategy (Sec-
tion 2.2.3). The value MULTI_SEQ uses sequence interpolation and our approach of multiple
counterexamples (Section 2.2.4).

• The variable Search represents the search strategy in the abstract state space. Values BFS and
DFS denote breadth- and depth-first search. Other values correspond to our error location-
based strategy (Section 2.2.2) with different weights wD and wE . The strategy ERR only takes
the error location into account, i.e. wD = 0 and wE = 1. The values ERR_DFS and DFS_ERR
use both weights but are biased towards one or the other (wD = 2, wE = 1 and wD = 1,
wE = 2 respectively).

Metrics.

• The dependent variable Succ indicates whether the algorithm terminated and provided a correct
result (no false negative/positive) successfully within the given CPU time and memory limits
(effectiveness).

• The variable Termination indicates the reason for termination (success, timeout, out-of-
memory, exception) in a finer way than Succ. It is only used in the detailed plots of the supple-
mentary report [a22].

• The variable Result denotes whether the model is safe or unsafe according to the algorithm. We
check that the result matches the expected (if available) and that all configurations agree.

• The variable TimeMs holds the execution time (CPU time) of the algorithm in milliseconds
(efficiency).

• The variableMemorymeasures the peak (maximal) memory consumption during the execution
of the algorithm in bytes (efficiency).

2.4.1.4 Experiment Design

The experiment design is summarized in Table 2.3. It would be possible to execute each configura-
tion on every model (crossover design) and then select the relevant subsets of data for each research
question. However, due to the high number of parameters and their possible values, it would yield
hundreds of configurations. Instead, for each research question, we identify and manipulate one or
two parameters that correspond to our new contributions. These parameters are called factors, for
which each value (level) is executed on every model, and the output is observed.

Based on our previous experience17 and the literature, the domain of the abstraction is a promi-
nent parameter of CEGAR. Therefore, we also include it in the experiments as a blocking factor to

16We actually represent 1∗ with the integer −1, but keep using 1∗ for the clarity of presentation.
17Some results of the preliminary experiments were published in [e12; c8; c9; e13]

68

2.4. Evaluation

Table 2.3: Overview of the experiment. Factors and blocking factors are marked with darker and
lighter background respectively.

Parameter RQ1 RQ2 RQ3 RQ4
Domain EXPL EXPL,

PRED_CART,
PRED_BOOL

EXPL,
PRED_CART,
PRED_BOOL

EXPL,
PRED_CART,
PRED_BOOL

MaxEnum 0, 1, 1∗, 5, 10, 50 plc: 0,
sv-comp: 1,
hwmcc: NA

plc: 0,
sv-comp: 1,
hwmcc: NA

plc: 0,
sv-comp: 1,
hwmcc: NA

Refinement SEQ_ITP SEQ_ITP BW_BIN_ITP,
FW_BIN_ITP,
SEQ_ITP

MULTI_SEQ,
SEQ_ITP

Search BFS, DFS BFS, DFS, ERR,
DFS_ERR,
ERR_DFS

BFS BFS

PrecGran. plc: LOCAL, sv-comp: GLOBAL, hwmcc: NA

systematically eliminate its undesired effect. RQ1 forms an exception, where only the explicit domain
is applicable, therefore we use the search strategy for blocking.

The rest of the independent variables are kept at a fixed level that usually performed well in our
previous experiments. These fixed levels, however, can be different based on the type of the model,
e.g. a local precision granularity is used for PLC models, while SV-COMP models perform better with
global precision. Furthermore, certain parameters might not be applicable (NA) to hardware models
since they are represented as transition systems instead of CFA.

To illustrate our designwith an example, in RQ1, we evaluate 6 levels forMaxEnum and 2 levels for
Search, while keeping other parameters at a fixed level. This yields a total number of 12 configurations.

2.4.1.5 Measurement Procedure

Measurements were executed on physical machines with 4 core (2.50 GHz) Intel Xeon L5420 CPUs and
32 GB of RAM, running Ubuntu 18.04.1 LTS andOracle JDK 1.8.0_191.We used z3 version 4.5.0 [MB08]
for SMT solving.18 To ensure reliable and accurate measurements, we used the RunExec tool from
the BenchExec suite [BLW19], which is a state-of-the-art benchmarking framework (also used at SV-
COMP). Each measurement was executed with a CPU time limit of 300 seconds19 and a memory limit
of 4GB. The results were collected into CSV files for further analysis. Eachmeasurement was repeated
2 times. Instructions to reproduce our experiment can be found in the supplementary material [a22].

2.4.1.6 Threats to Validity

In this subsection we discuss threats to construct, internal and external validity [Woh+12] of our ex-
periment. We are not concerned with conclusion validity, as we do not use statistical tests [Woh+12].

18z3 dropped support for interpolation since version 4.8.1, but still works with version 4.5.0 that we used for the mea-
surements. However, in order to use more recent versions, we are considering to use a separate SMT solver for interpolation,
e.g. SMTInterpol [CHN12] or MathSAT [Cim+13].

19RunExec also puts a limit on the wall time, which is CPU time limit plus 30 seconds by default.

69

2. Efficient Strategies for CEGAR-based Software Model Checking

Construct validity can be ensured by using proper metrics to describe the “goodness” of algo-
rithms. We use the number of solved instances for effectiveness and the total execution time and peak
memory consumption for efficiency. These metrics are widely used to characterize model checking
algorithms [Bey17; Cab+16; Amp+19] and solvers [Jär+12; Web+19].

Internal validity is concerned with identifying the proper relationship between the treatments
and the outcome. We use dedicated hardware machines and repeated executions to reduce noise
from the environment. Accuracy of the results is ensured by BenchExec [BLW19], a state-of-the-
art benchmarking tool. We also apply blocking factors to eliminate undesired effects from known
factors systematically. Nevertheless, internal validity could still be improved using a full, crossover
design (executing all configurations on all models).

External validity is increased by using models from different and diverse sources, including stan-
dard benchmark suites (SV-COMP [Bey17] and HWMCC [Cab+16]) and industrial models [Fer+15].
We compared our new contributions with various state-of-the-art algorithms implemented within
the same framework. Furthermore, we also compare our implementation to other tools to provide a
baseline (Section 2.4.3). However, external validity would benefit from using additional models (for
example, from other categories of SV-COMP) and from comparing related algorithms as well. De-
scribing models with additional variables (e.g. size or complexity) besides their category would also
further generalize our results.

2.4.2 Results and Analysis

We present the results and analyses for each research question in a separate subsection. Analyses
were performed using the R software environment [Cor17; WG16] version 3.4.3. We only present the
most relevant results in this thesis, but the raw data, the R script, and a detailed report can be found
in the supplementary material [a22].

In each analysis, we first merge the repeated executions of the same measurement (same configu-
ration on the same model) into a single data point in the following way. We consider a measurement
successful if at least one of the repeated executions is successful. This is a reasonable choice as, in
most cases, either all executions are successful or none of them are. Then, we calculate the execution
time of a measurement by taking the mean time of its successful repetitions. The relative standard
deviation20 between the repeated executions was usually around 1% to 2%, allowing us to represent
themwith their mean. In a few cases, the repeated executions terminated due to a different reason (e.g.
timeout first, then out-of-memory). In these cases, we counted the first reason during aggregation.

2.4.2.1 RQ1: Configurable Explicit Domain

Results. In this question we analyze 6 different levels forMaxEnumwith respect to 2 levels for the
blocking factor Search. These configurations are only applicable to the 535 CFAmodels, giving a total
number of (6 · 2) · 535 = 6420 measurements, from which 3928 (61%) are successful.

The heatmap in Figure 2.9 presents an overview of the results. Configurations are described by the
levels of Search and MaxEnum. Categories are given by their name and the number of models, and
the rightmost column is a summary of all categories. Each cell represents the number of successful
measurements in a given category, alongwith the total execution time and peakmemory consumption
for successful measurements (rounded to 3 significant digits [BLW19]). The background color of the
cell indicates the success rate of the configurations, i.e. the percentage of successful measurements.

20Relative standard deviation (also called the coefficient of variation) is the ratio of the standard deviation to the mean.

70

2.4. Evaluation

The last row is the virtual best configuration, i.e. taking the result of the best configuration for each
model individually.

1134 20 652

132143 22 3314

129143 20 2114

132143 22 6314

126143 23 6614

126143 23 6814

1114 19 550

127143 21 3513

126143 20 2413

127143 21 5813

120143 22 6113

120143 22 6013

142143 23 6815 391

204

344

327

374

372

374

189

339

326

362

359

358

2520s5.09s 93.3s 624s6.34s

3860s194s 88.8s 90.5s234s

2880s188s 60.2s 37.5s212s

4150s196s 87.6s 217s239s

3460s199s 90.9s 269s243s

3400s222s 97.4s 626s279s

2510s5.07s 82.9s 179s0s

3020s193s 92.3s 92.3s219s

2250s187s 74.7s 48.2s195s

3490s196s 92.4s 311s234s

2750s199s 95.5s 450s237s

2750s223s 94s 224s265s

5310s186s 86s 491s239s 6310s

3250s

4470s

3380s

4890s

4270s

4620s

2770s

3610s

2750s

4320s

3730s

3550s

1970Mb55.5Mb 465Mb 2990Mb163Mb

2030Mb56.9Mb 322Mb 238Mb886Mb

1790Mb56.2Mb 464Mb 107Mb871Mb

2260Mb57.3Mb 326Mb 397Mb901Mb

2250Mb57.7Mb 321Mb 1320Mb900Mb

2250Mb59.5Mb 459Mb 3000Mb1500Mb

2200Mb54.3Mb 457Mb 741Mb0Mb

1180Mb56.5Mb 318Mb 220Mb535Mb

1160Mb56.1Mb 357Mb 119Mb347Mb

2190Mb56.8Mb 298Mb 2260Mb511Mb

2190Mb57.3Mb 462Mb 2850Mb521Mb

1980Mb58.7Mb 324Mb 745Mb778Mb

2030Mb55.2Mb 253Mb 2990Mb489Mb 2990Mb

2990Mb

2030Mb

1790Mb

2260Mb

2250Mb

3000Mb

2200Mb

1180Mb

1160Mb

2260Mb

2850Mb

1980Mb

143 105 180 17 90 535

 virtual best

BFS_00

BFS_01

BFS_01*

BFS_05

BFS_10

BFS_50

DFS_00

DFS_01

DFS_01*

DFS_05

DFS_10

DFS_50

locks loops eca ssh plc TOTAL
Category

C
on

fig
ur

at
io

n

0%

25%

50%

75%

100%

Success
rate

Figure 2.9: Overview of the success rates, total execution time and peak memory usage for RQ1.

Discussion. It can be seen that traditional explicit-value analysis, i.e. configurations BFS_01* and
DFS_01* perform well for the SV-COMP categories (locks, eca, ssh), but give poor performance on
PLC models. We observed here that the required variables get tracked, but the same counterexam-
ple is obtained continuously (there is no refinement progress). One reason for this is that there are
nondeterministic Boolean inputs, but the program ensures that not all combinations can be taken (e.g.
assuming an implication between two variables allows 3 out of 4 combinations).Without enumeration
the analysis cannot represent this and treats them as top values, leading to a spurious counterexample.

On the other end of the spectrum, configurations BFS_0 and DFS_0 enumerate all possible suc-
cessors (k = ∞). This gives a poor success rate on particular SV-COMP categories, having integer
variables with a theoretically infinite21 domain. Lazy abstraction also plays a role in this because we

21SV-COMP contains C programs where integers have a fixed bit-width. However, in our implementation, we use SMT
integers with an infinite domain. From a practical point of view, enumerating 232 or 264 states can be considered as infinite.

71

2. Efficient Strategies for CEGAR-based Software Model Checking

observed that sometimes a variable does not get pruned back to its first assignment (but rather to
the first point of infeasibility). Continuing abstraction with enumeration yields infinite successors,
because the variable gets tracked, but its value is nondeterministic. Note that these configurations
can still solve certain problems as they represent nondeterministic variables with the top value ini-
tially and only start enumerating possible values as soon as they appear in some expression (and are
tracked explicitly). These configurations are more suitable for PLC models than traditional explicit-
value analysis because PLCs usually contain many Boolean input variables, and it is often feasible to
enumerate all possibilities to increase precision (which is often needed, as described above).

The advantage of our configurable approach is demonstrated by the configurations having 5, 10,
or 50 for MaxEnum. These configurations give a good performance overall and a remarkably better
success rate on category plc compared to traditional explicit-value analysis. Moreover, with k >= 10,
configurations can solve a few more plc instances than with enumerating all possibilities. It can also
be observed, that using an SMT solver for expressions that cannot be evaluated with simple heuristics
(01) can improve success rate compared to not using a solver (01*) with 13 and 17 models for DFS
and BFS respectively. Furthermore, it can be seen that BFS is consistently more effective thanDFS for
the same MaxEnum value. The overall best configuration in this analysis is BFS_50, but BFS_05 and
BFS_10 closely follows.

An interesting further research direction would be to determine the optimal value forMaxEnum
in advance based on the static properties of the input model (e.g. variable usage [Ape+13]) or to adjust
it dynamically during analysis.

Summary. Our configurable explicit domain can combine the advantages of traditional explicit-
value analysis and explicit enumeration of successor states, giving a good performance overall in
each category. Furthermore, although using an SMT solver requires more time, it increases precision
and achieves a slightly higher success rate.

2.4.2.2 RQ2: Error Location-Based Search

Results. In this question we analyze 5 different levels for Search with respect to 3 levels for the
blocking factor Domain. These configurations are only applicable to the 535 CFA models, giving a
total number of (5 · 3) · 535 = 8025 measurements, from which 6242 (78%) are successful. The
heatmap in Figure 2.10 presents an overview of the results. Configurations are described by the levels
of Domain and Search.

Discussion. The overall performance of configurations is similar, ranging from 416 to 447 success-
ful measurements for PRED_∗ and 357 to 389 for EXPL. However, there are some interesting patterns
in specific categories. The blocking factor (Domain) is dominant for the loops, ssh and plc categories:
configurations with EXPL perform better for ssh and PRED_∗ is more effective for loops and plc.

The success rates for different search strategies within the same domain are quite similar with a
few notable examples. Our purely error location-based strategy (ERR) yields a higher success rate in
general compared to others. We observed that this configuration often requires less iterations with
significantly smaller ARGs (e.g. 3 iterations with ARG sizes of 284, 532 and 3590 when BFS has 6
iterations with ARGs of size 300, 582, 894, 1522, 2752 and 10766). In contrast, our ERR_DFS com-
bined strategy has a poor performance for eca models in the predicate domain. The supplementary
report [a22] includes separate plots for safe and unsafe benchmarks and we observed that the poor
performance can be attributed to the safe models. We checked some individual examples with a larger
time limit. In this case these configurations also terminated, but required more than 400% time and

72

2.4. Evaluation

150% iterations. We also observed that the advantage of ERR strategies is more prominent for unsafe
models, and they are similar to others for safe instances.

A possible future research direction is to experiment with different combinations and weights for
the strategies, possibly based on domain knowledge about the input models.

Summary. Our error location-based search can yield improvement for certain models. However,
our combined strategies that are efficient for artificial examples (Figure 2.5) provide no remarkable
improvement for real-world models.

132143 22 6514

126143 20 5513

129143 21 6814

145143 20 6615

130143 21 6614

120143 89 838

119143 89 817

115143 90 848

119143 90 839

96143 89 838

119143 88 858

119143 86 819

117143 88 859

119143 89 8511

91143 88 859

152143 96 8615 492

376

357

375

389

374

443

439

440

444

419

443

438

442

447

416

3920s196s 96.2s 618s238s

2770s196s 82s 179s228s

2770s196s 104s 567s183s

5830s196s 82.3s 430s260s

2780s196s 106s 431s167s

8170s195s 243s 961s112s

5850s196s 438s 655s375s

12200s197s 295s 1050s71.1s

9800s198s 233s 1070s369s

11200s198s 350s 1060s54s

9030s192s 299s 783s111s

6580s192s 355s 427s776s

13000s192s 296s 570s328s

11300s192s 515s 584s753s

10500s192s 295s 528s312s

6250s189s 522s 444s192s 7600s

5060s

3450s

3820s

6800s

3680s

9680s

7520s

13900s

11700s

12800s

10400s

8330s

14300s

13300s

11900s

2250Mb56.9Mb 595Mb 2990Mb900Mb

1180Mb57.3Mb 326Mb 743Mb585Mb

2320Mb56.5Mb 317Mb 2960Mb806Mb

2250Mb56.5Mb 262Mb 3010Mb714Mb

2240Mb57.2Mb 329Mb 3010Mb1160Mb

667Mb56.7Mb 3010Mb 2980Mb263Mb

786Mb56.8Mb 3260Mb 2960Mb2950Mb

909Mb56.5Mb 2410Mb 2980Mb355Mb

1050Mb56.8Mb 2970Mb 3020Mb1230Mb

1170Mb56.3Mb 3230Mb 2990Mb224Mb

419Mb55.4Mb 200Mb 734Mb207Mb

376Mb56.3Mb 198Mb 723Mb209Mb

507Mb56Mb 202Mb 732Mb203Mb

444Mb55.6Mb 205Mb 727Mb204Mb

526Mb55.4Mb 200Mb 743Mb199Mb

2250Mb54.1Mb 2410Mb 723Mb643Mb 2410Mb

2990Mb

1180Mb

2960Mb

3010Mb

3010Mb

3010Mb

3260Mb

2980Mb

3020Mb

3230Mb

734Mb

723Mb

732Mb

727Mb

743Mb

143 105 180 17 90 535

 virtual best

EXPL_BFS

EXPL_DFS

EXPL_DFS_ERR

EXPL_ERR

EXPL_ERR_DFS

PRED_BOOL_BFS

PRED_BOOL_DFS

PRED_BOOL_DFS_ERR

PRED_BOOL_ERR

PRED_BOOL_ERR_DFS

PRED_CART_BFS

PRED_CART_DFS

PRED_CART_DFS_ERR

PRED_CART_ERR

PRED_CART_ERR_DFS

locks loops eca ssh plc TOTAL
Category

C
on

fig
ur

at
io

n

0%

25%

50%

75%

100%

Success
rate

Figure 2.10: Overview of the success rates, total execution time and peak memory usage for RQ2.

73

2. Efficient Strategies for CEGAR-based Software Model Checking

2.4.2.3 RQ3: Backward Binary Interpolation

Results. In this question we analyze 3 different levels for Refinement with respect to 3 levels for
the blocking factor Domain. These configurations are applicable to all 835 models, giving a total
number of (3 ·3) ·835 = 7515measurements, from which 2933 (39%) are successful. The heatmap in
Figure 2.11 presents an overview of the results. Configurations are described by the levels of Domain
and Refinement.

80 50143 20 7012

0 454 13 00

133 48143 22 6514

121 48143 88 7911

0 234 14 00

120 52143 89 838

127 51143 90 8511

0 234 14 00

119 54143 88 858

140 65143 96 8616 546

375

62

425

490

41

495

507

41

497

2110s 1930s194s 100s 496s154s

0s 1170s5.02s 51.5s 0s0s

4100s 1780s196s 87.4s 626s239s

9510s 1190s195s 160s 961s462s

0s 312s4.83s 17.5s 0s0s

8160s 1410s195s 243s 968s112s

7990s 1370s191s 179s 521s448s

0s 316s4.84s 17.5s 0s0s

9040s 1390s192s 300s 784s111s

4660s 2170s190s 233s 408s216s 7880s

4980s

1230s

7030s

12500s

334s

11100s

10700s

338s

11800s

2510Mb 3320Mb56.6Mb 330Mb 2950Mb639Mb

0Mb 2550Mb54.5Mb 263Mb 0Mb0Mb

2250Mb 3150Mb56.8Mb 324Mb 2990Mb637Mb

2450Mb 3460Mb56.5Mb 366Mb 3880Mb414Mb

0Mb 659Mb53Mb 54.4Mb 0Mb0Mb

693Mb 3760Mb56.8Mb 3010Mb 2980Mb355Mb

364Mb 1760Mb55.3Mb 207Mb 439Mb208Mb

0Mb 644Mb53.8Mb 53.9Mb 0Mb0Mb

371Mb 3340Mb55.5Mb 196Mb 736Mb209Mb

2230Mb 3340Mb55Mb 1310Mb 736Mb637Mb 3340Mb

3320Mb

2550Mb

3150Mb

3880Mb

659Mb

3760Mb

1760Mb

644Mb

3340Mb

143 105 180 17 90 300 835

 virtual best

EXPL_BW_BIN_ITP

EXPL_FW_BIN_ITP

EXPL_SEQ_ITP

PRED_BOOL_BW_BIN_ITP

PRED_BOOL_FW_BIN_ITP

PRED_BOOL_SEQ_ITP

PRED_CART_BW_BIN_ITP

PRED_CART_FW_BIN_ITP

PRED_CART_SEQ_ITP

locks loops eca ssh plc hwmcc TOTAL
Category

C
on

fig
ur

at
io

n

0%

25%

50%

75%

100%

Success
rate

Figure 2.11: Overview of the success rates, total execution time and peak memory usage for RQ3.

Discussion. It can be seen clearly that forward binary interpolation (FW_BIN_ITP) fails for almost
every CFA model, except for a few (mainly unsafe) instances in categories locks and loops. For hard-
ware models, it is slightly more effective in the EXPL domain. In most cases we observed that forward
interpolation cannot solve problems because late pruning (as discussed in Section 2.2.3): even if the
right predicates or variables get tracked they are still unknown before the pruning point and there is
no refinement progress in the next iteration.

Sequence interpolation (SEQ_ITP) and our backward binary interpolation approach (BW_BIN_-
ITP) have similar success rates. The former one is more successful in the PRED_BOOL and EXPL
domains, while the latter is effective in the PRED_CART domain (making it the best overall configu-
ration). The differences are however, only remarkable in the EXPL domain, where BW_BIN_ITP has
a low success rate on ecamodels. Furthermore, BW_BIN_ITP in the PRED_CART domain has around
half the peak memory consumption than SEQ_ITP in any domain. We observed that this is due to
more compact refinements, which often yield an ARG that is 2–4 times smaller.

74

2.4. Evaluation

An interesting further direction would be to involve the granularity of the precision (local/global)
as a blocking factor, as for BW_BIN_ITP a local precision could involve more refinement steps.

Summary. Our backward binary interpolation strategy clearly outperforms forward interpolation
and has similar performance to sequence interpolation, in some cases even outperforming it.

2.4.2.4 RQ4: Multiple Counterexamples for Refinement

Results. In this question we analyze 2 different levels for Refinement with respect to 3 levels for
the blocking factor Domain. We are interested in whether collecting and refining multiple counterex-
amples at once (MULTI_SEQ) can yield better performance than using a single path (SEQ_ITP). These
configurations are applicable to all 835 models, giving a total number of (2 · 3) · 835 = 5010 mea-
surements, from which 2858 (57%) are successful. The heatmap in Figure 2.12 presents an overview
of the results. Configurations are described by the levels of Domain and Refinement.

171 45143 18 6513

133 47143 22 6514

120 50143 89 808

120 52143 89 838

119 55143 86 859

119 54143 88 858

171 62143 94 8514 569

455

424

490

495

497

497

4990s 1170s195s 38.7s 361s232s

4070s 1470s196s 94.1s 625s235s

7900s 1010s192s 284s 658s176s

8160s 1420s195s 243s 963s112s

8760s 1580s190s 296s 869s538s

9060s 1390s192s 299s 785s111s

4990s 2160s189s 203s 695s157s 8390s

6990s

6700s

10200s

11100s

12200s

11800s

1560Mb 2280Mb56.9Mb 192Mb 1240Mb1010Mb

2260Mb 2690Mb57.2Mb 461Mb 2990Mb1160Mb

692Mb 2160Mb55.6Mb 3060Mb 2950Mb495Mb

747Mb 3690Mb55.9Mb 3010Mb 3030Mb270Mb

363Mb 3360Mb55.9Mb 201Mb 736Mb205Mb

370Mb 3350Mb56.1Mb 200Mb 722Mb206Mb

1560Mb 3350Mb54.4Mb 1300Mb 722Mb889Mb 3350Mb

2280Mb

2990Mb

3060Mb

3690Mb

3360Mb

3350Mb

143 105 180 17 90 300 835

 virtual best

EXPL_MULTI_SEQ

EXPL_SEQ_ITP

PRED_BOOL_MULTI_SEQ

PRED_BOOL_SEQ_ITP

PRED_CART_MULTI_SEQ

PRED_CART_SEQ_ITP

locks loops eca ssh plc hwmcc TOTAL
Category

C
on

fig
ur

at
io

n

0%

25%

50%

75%

100%

Success
rate

Figure 2.12: Overview of the success rates, total execution time and peak memory usage for RQ4.

Discussion. It can be seen that the blocking factor (Domain) is dominant for the eca, loops, ssh
and plc categories. Configurations with PRED_∗ domain are more successful for loops and plc mod-
els, whereas EXPL is more effective for categories eca and ssh. The difference between using a single
or multiple counterexamples within the PRED_∗ domains is not remarkable, ranging from 490 to 497
verified models. However, using multiple counterexamples is clearly more effective in the EXPL do-
main due to the eca category. This can be attributed to the fact that these models have the largest
cyclomatic complexity, enabling the algorithm to utilize the full power of our strategy that uses mul-
tiple counterexamples. Furthermore, there are 39 models that only EXPL_MULTI_SEQ could verify.
We observed that this can also be attributed to the simpler stop criterion: if we explore all counterex-
amples, we do not have to check if an unsafe node is found (in each step).

75

2. Efficient Strategies for CEGAR-based Software Model Checking

As a possible future direction, it would be interesting to experiment with different refinement
strategies (e.g. backward binary). Moreover, information from multiple counterexamples could be
utilized in more detail than just selecting a minimal set required to eliminate all spurious behavior.

Summary. Our strategy for using multiple counterexamples can yield remarkably better perfor-
mance in the explicit domain for complex models.

2.4.3 Comparison to Other Tools

In order to provide a baseline for the research questions in the previous section, we compare Theta
to other tools. Unfortunately, we did not have the computing resources to run all measurements in
a common environment. Therefore, we took the raw data22 from SV-COMP 2018 and filtered to the
models that Theta can handle. Furthermore, we executed four configurations of Theta in a similar
environment to SV-COMP, using a 900 second time limit and 15 GB memory limit. Note that these
are higher limits compared to the research questions. The hardware machines we used for Theta had
weaker CPUs than the ones at SV-COMP, giving us a slight disadvantage. However, our purpose was
not to give an exact comparison, but rather just to show that Theta is competitive with respect to the
state of the art. Therefore, we omit time and memory measurements and only indicate the number of
successful executions.

Currently, the frontend of Theta produces a different verification task for each assertion in a C
program due to slicing. Therefore, we selected those models from loops that contain a single assertion.
In category locks, there is also a single assertion, reachable by multiple labels that we used as slicing
criteria for the research questions. For the current measurements, we create a single task to be able
to compare to other tools. The other categories (eca and ssh) contain one assertion per file.

Configurations of Theta are summarized in Table 2.4. The first two configurations (theta-pred-
seq and theta-expl-seq) implement already existing strategies, while the latter two include our new
approaches that performedwell in the research questions. For example, theta-pred-bw performs back-
ward binary interpolation (RQ3), while theta-expl-multiseq uses an SMT solver to evaluate unknown
expressions (up to a limit of one) (RQ1) and performs refinement based on multiple counterexamples
(RQ4). Furthermore, the latter two configurations use the error location-based search strategy (RQ2).

Table 2.4: Configurations of Theta compared against other tools.

Configuration name Domain MaxEnum Refinement Search PrecGran.

theta-pred-seq PRED_CART SEQ_ITP BFS GLOBAL
theta-expl-seq EXPL 1∗ SEQ_ITP BFS GLOBAL
theta-pred-bw PRED_CART BW_BIN_ITP ERR GLOBAL
theta-expl-multiseq EXPL 1 MULTI_SEQ ERR GLOBAL

Results can be seen in Figure 2.13, where each cell indicates the success rate of a tool (or config-
uration) in a given category. The last column is a summary of all categories. Empty spaces indicate
that a tool did not compete in a certain category. Based on the competition reports [Bey16; Bey17] the
tools CPA-BAM-BnB, CPA-BAM-Slicing, CPA-Seq, InterpChecker and Skink are the most closely
related to Theta as they also work with CEGAR and ARG-based analysis. The tools UAutomizer,

22https://sv-comp.sosy-lab.org/2018/results/results-verified/All-Raw.zip

76

https://sv-comp.sosy-lab.org/2018/results/results-verified/All-Raw.zip

2.4. Evaluation

UKojak and UTaipan also employ CEGAR, but their analysis is based on automata [Bey17]. Other
tools are mainly based on bounded model checking, k-induction, or symbolic execution.

17510 16 14
1378 18 14
1376 33 14
1286 33 9
14313 26 11
332 24 11

12713 37 17
18013 38 17
18013 33 17
3313 25 13
332 21 11
3313 24 11

1089 37 17
27

13 39 0
3213 32 11

13913 40 17
12113 34 8
4013 41 14

15613 44 11
35

215
177
190
176
193
70

194
248
243
84
67
81

171
27
52
88

209
176
108
224
35

13 49 180 17 259
 theta−expl−multiseq

 theta−expl−seq
 theta−pred−bw

 theta−pred−seq
2ls

cbmc
cpa−bam−bnb

cpa−bam−slicing
cpa−seq

depthk
esbmc−incr
esbmc−kind

interpchecker
map2check

skink
symbiotic

uautomizer
ukojak

utaipan
veriabs

viap

locks loops eca ssh TOTAL
Category

To
ol

0%

25%

50%

75%

100%

Success
rate

Figure 2.13: Overview of the success rates for various Theta configurations and other tools from
SV-COMP 2018.

The models represent a small subset of SV-COMP benchmarks, and many of them belong to the
simpler instances. However, the success rates already have a high variance, ranging from 70 to 248
(out of 259) for those tools that competed in all of the categories. Configurations for Theta perform
well in this comparison, verifying 176 to 215 tasks. There are 242 tasks (out of 259) that could be
solved by at least one Theta configuration. For these models, Figure 2.14 presents their distribution
in terms of the number of other tools that could verify them. It can be seen that most of the tasks could
be verified by 8 or 9 tools (out of 17), and there are also roughly 20 tasks that only two tools could
verify besides Theta. This indicates that there are non-trivial tasks successfully solved by Theta.

Furthermore, Figure 2.15 lists the number of models in each category that were verified by at
least one Theta configuration, but not by a given other tool. It can be seen that even though CPA-
BAM-Slicing and CPA-Seq can verify more models than Theta configurations in terms of absolute
numbers, there are 3 and 7 models respectively in loops that they could not solve. The takeaway
message of this comparison is that although the C frontend of Theta is limited, our implementation
is still competitive with respect to state-of-the-art tools and can serve as a baseline for evaluating new
algorithms and strategies.

77

2. Efficient Strategies for CEGAR-based Software Model Checking

0

20

40

60

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of tools

M
od

el
s

ve
rif

ie
d Category

eca

locks

loops

ssh

Figure 2.14: Distribution of the 242 models (verified by at least one Theta configuration) in terms of
the number of other tools that could verify them.

33
143
49
0
0

143
143
143
68

144
37
55

136
20

0
8
0
0
0
0
8
0
1

0
0
0
0
0
0

13
17
4
3
7

14
19
16
5

14
6

10
1
6
1
2

11

6
6
0
0
0
4
6
6
0

17
6
0
9
3
6

52
174
53
3
7

161
176
165
74
14
23

160
38
70

140
28
11

2ls
cbmc

cpa−bam−bnb
cpa−bam−slicing

cpa−seq
depthk

esbmc−incr
esbmc−kind

interpchecker
map2check

skink
symbiotic

uautomizer
ukojak

utaipan
veriabs

viap

locks loops eca ssh TOTAL
Category

To
ol

0%

25%

50%

75%

100%

Unsolved
rate

Figure 2.15: Number of models that could be verified by at least one Theta configuration, but not by
the given tool.

2.5 Related Work

In this section, we present related work to our framework in general, to our algorithmic contributions
and to our experimental evaluation.

General. Abstraction and CEGAR-based methods are widely used for model checking [Bey17], im-
plemented by several tools, e.g. Slam [BR01], Blast [Bey+07], SatAbs [Cla+05], Impact [McM06],
Wolverine [KW11], Dagger [Gul+08] and Vinta [AGC12]. The most closely related are the frame-
worksCPAchecker [BK11] andUFO [Alb+12] that support configurability based on abstract domains
and refinement strategies. These tools, however, only target software models in contrast to Theta,
which also supports transition systems and timed automata [c9][TM18]. The LTSmin [Kan+15] tool

78

2.5. Related Work

and the Ultimate framework23 also support different kind of models and algorithms, but their pri-
mary focus is on symbolic methods and automata respectively instead of abstraction.

Configurable explicit domain. The transfer function of our configurable explicit domain (Sec-
tion 2.2.1) can be considered as a generalization of explicit-value analysis [BL13], which always enu-
merates at most one successor state. The visible/invisible variables approach [CGS04] is similar to
the other end of the spectrum, enumerating all possible successors (k = ∞) for transition systems
defined by partitioned transition relations.

Error location-based search. Our error location-based search (Section 2.2.2) is basically an A∗

search [HNR68], for which we adjusted the cost function to the domain of software model checking.
We use the depth as the cost of the current path, and the distance from the error location as the
estimated remaining cost. State space traversal strategies have also been discussed in the context of
explicit model checking and abstract interpretation [CC77]. The main focus of these approaches is to
reach a fixpoint by identifying widening points and iterations strategies (e.g. based on loops) [Bou93].
In contrast, the goal of our method is to guide the search towards an abstract state with a specific
location. However, some ideas of the existing approaches could also be combined with our method,
e.g. processing loops first, and then heading towards the error location. Considering the syntactical
distance in the CFA has also been proven effective for achieving higher coverage in dynamic test
generation tools such as Crest [BS08] and Klee [CDE08].

Backward binary interpolation. The most closely related to our backward binary interpolation
(Section 2.2.3) is the approach of Brückner et al. [Brü+07]. They first calculate aminimal subpath of the
counterexample that is spurious, i.e. it is feasible, but extending it in any direction makes it infeasible.
Then, they use a binary interpolant to refine the last state of this subpath. In contrast, our approach can
be considered as refining the state before the first state of the subpath. Henzinger et al. [Hen+04] also
use binary interpolation, but they calculate an interpolant for each location in the counterexample
from the same proof. The counterexample minimization approach of Alberti et al. [Alb+14] is also
similar to ours as they consider the shortest infeasible suffix of the counterexample. However, their
approach is defined in the context of lazy abstraction with interpolants (Impact [McM06]), and they
compute an interpolant for each location. Moreover, they perform a backward unwinding, whereas we
do a forward search and then proceed backward only in the counterexample. This also highlights the
possibility to experiment with different combinations of forward/backward search and interpolation.

The Newton approach [BR02] performs a forward search, but uses the strongest postcondi-
tion operator instead of interpolants. However, counterexamples are generalized with symbolic vari-
ables, which could be combined with forward or backward interpolation strategies. A different vari-
ant [Die+17] of the Newton approach performs a backward search during refinement but uses the
weakest precondition operator combined with unsatisfiability cores instead of Craig interpolants. The
approach of Slam [Bal04] also performs a backward check on the counterexample but only up to a
bounded depth. Then, they use Craig interpolation at each step to weaken the predicates coming from
the weakest preconditions.

Cabodi et al. [CNQ11] compare the iterative application of traditional forward interpolation to se-
quence interpolation. They come to a similar conclusion as us, namely that while sequence interpola-
tion performs refinement at once, traditional interpolation can sometimes have a better performance
due to convergence at shorter depths in their case.

23https://ultimate.informatik.uni-freiburg.de/

79

https://ultimate.informatik.uni-freiburg.de/

2. Efficient Strategies for CEGAR-based Software Model Checking

Multiple counterexamples for refinement. Most algorithms in the literature use a single coun-
terexample for refinement. The UFO tool [Alb+12] includes DAG interpolants [Alb15] that refine
all counterexamples at once. Our approach for multiple counterexamples (Section 2.2.4) calculates a
separate interpolant for each path and minimizes and merges the results. While computing a DAG
interpolant seems more efficient than a series of independent interpolations, our approach could also
have various advantages. First, different paths could use different refinement procedures (e.g. back-
ward vs. sequence). Second, it would also be possible to do multiple refinements for each path (e.g. by
different interpolation approaches or by multiple prefixes [BLW15b]), take the “best” one and merge
it with interpolants from the other counterexamples.

The global refinement algorithm from the thesis of Löwe [Löw17] computes a tree of interpolants
using a series of interpolations (by reusing common prefixes). Our approach could also gain perfor-
mance increase from reusing common prefixes (with the incremental API of solvers). However, our
approach has the advantage that each counterexample can use any kind of refinement procedure (e.g.
backward interpolation). We believe that this is beneficial in the context of a global precision, where
the predicates or variables from the interpolants are merged and used globally.

Experimental evaluation. Many works in the literature focus on experimental evaluation and
comparison ofmodel checking algorithms [WBK20; BDW18; BW12; Cze+17; Dem+17]. However, they
usually focus on a particular domain (e.g. SV-COMP). Our framework allows us to experiment with
models from different domains, including SV-COMP, HWMCC, and PLC codes as well. Furthermore,
our experiments compare parameters and configurations of a single algorithm (CEGAR), yielding a
finer granularity as opposed to most experiments in the literature, where different tools or different
algorithms are compared. This allows us to assess the effectiveness and efficiency of our lower level
strategies.

2.6 Summary and Future Work

In this thesis, we presented various new strategies for abstraction and refinement in the context of
CEGAR-based software model checking. We implemented a generic CEGAR approach and our new
contributions in theTheta verification framework and conducted an experimental evaluation. Results
highlight various categories of inputs where the new contributions remarkably improved efficiency.
My contributions are summarized as follows.

Thesis 2 I proposed various improvements and strategies to CEGAR-based software model
checking, increasing the efficiency of the algorithm.
2.1 I generalized explicit-value analysis to be able to enumerate a predefined, configurable

number of successor states, improving its precision, but avoiding state space explosion.
2.2 I adapted a search strategy to the context of CEGAR that estimates the distance from the

erroneous state in the abstract state space based on the structure of the software, efficiently
guiding exploration towards counterexamples.

2.3 I introduced an interpolation strategy based on backward reachability, that traces back
the reason of infeasibility to the earliest point in the program, yielding a faster refinement
convergence.

2.4 I described an approach for refinement based on multiple counterexamples, which al-
lows exchanging information between counterexamples and provides better quality re-
finements.

80

2.6. Summary and Future Work

Joint work. András Vörös and Tamás Tóth were taking part in the development of the generic
framework for transition systems as my M.Sc. supervisors. István Majzik, the Ph.D. supervisor of
Tamás Tóth, also helped with his advice and feedback. Zoltán Micskei was taking part in the devel-
opment of the new strategies as my Ph.D. supervisor. The implementation of Thetawas a joint work
with Tamás Tóth. He was mainly responsible for the core of the framework and the algorithms for
timed systems, while I developed the CEGAR algorithm related to transition systems and control-flow
automata. The C frontend was developed by a M.Sc. student, Gyula Sallai, whom I co-advised.

Publications. The generic framework for transition systems was defined in the M.Sc. thesis of the
author [a21] and published at the FORTE 2016 conference [c6]. Preliminary experiments and evalua-
tions were presented at the Ph.D. Minisymposia at BME [e12; e13]. The improvements to abstraction
and refinement were published in the Journal of Automated Reasoning [j3]. The implementation was
presented in a tool paper at FMCAD 2017 [c9] and in a paper about the C frontend at VPT 2017 [c8].

Applications. The generic CEGAR framework and the algorithmic improvements are implemented
as part of the Theta open-source verification framework [c9]. During a project with CERN we inte-
grated Theta as a backend verifier to the PLCverif24 tool [DBM19]. PLCverif works by translating
the source code of PLC (programmable logic controller) programs to an intermediate (CFA-like) rep-
resentation, which can then be mapped to the input language of various model checkers [DFB15].
Theta was successfully integrated with PLCverif, and an extensive benchmarking session on 90 in-
put PLC codes confirmed that two configurations of Theta (including our new contributions) could
together verify all of them.

Various student theses and works are built on Theta [Czi16; Far16; FB18; Teg18], on the generic
CEGAR framework [Sal16; ST17; Baj18; Dob19; MV20] and on our new contributions [Sal19]. Fur-
thermore, Theta is also used in education as a demonstrator in the Critical Architectures Laboratory
course, where students develop bounded model checking and CEGAR algorithms.

Future work. We experimented with a predefined set of values for the limit of enumeration in
the configurable explicit domain. An interesting future direction would be to determine this number
in a preprocessing step based on some static properties of the input model. For example, running
an interval-based abstract interpretation could give us hints on the approximate range of variables.
Alternatively, this number could also be part of the precision so that it could be dynamically adjusted
during refinement.

The error location-based search could be investigated in more detail with different combinations
and weights for the search strategies, which could also be determined based on the model, or ad-
justed dynamically runtime. Furthermore, we could borrow ideas from iteration strategies of abstract
interpretation [Bou93], for example, processing loops starting from the innermost and progressing
outwards.

The backward binary interpolation strategy works well with a global precision based on our ex-
periments. It would be interesting to see how it performswith local precision.Wemight need to adjust
the algorithm to be effective by, for example refining the precision of all states in the feasible suffix.

Multiple counterexamples were refined based on sequence interpolation. A promising direction
would be to try alternative strategies (e.g. backward binary). Furthermore, the implementation could
be optimized by only pushing the common prefix of counterexamples to the solver once (utilizing the
incremental push/pop feature of solvers).

24http://cern.ch/plcverif/

81

http://cern.ch/plcverif/

2. Efficient Strategies for CEGAR-based Software Model Checking

Our algorithms are currently limited to reachability queries. Many properties can be reduced to
reachability [Bey15; Sal19], but the expressive power of the algorithm could be lifted by supporting
a richer language, e.g. linear- or branching-time temporal logic [Sch02]. A preliminary student work
addresses lasso-shaped counterexamples in order to support linear temporal logic (LTL) queries in
the CEGAR approach [MV20].

In our implementation, we currently treat sequential statements in the CFA as one block and
only calculate abstraction at the end of the block. However, large-block encoding (LBE) [Bey+09] also
merges branching statements (if-then-else) using disjunctions. This makes abstraction more precise
and more efficient as there are intermediate states where no abstraction is required. Adjustable-block
encoding (ABE) [BKW10] generalizes this by allowing the merge points to be configurable.We believe
that our algorithms could also benefit from such encodings.

The validity of the experimental evaluation could be increased by using additional models (e.g.
further categories of SV-COMP) and by comparing to tools implementing similar strategies (e.g.
Ufo [Alb+12]). For this, we are currently working on an LLVM-based frontend [Sal19] to support
more language features from C. This frontend already includes various compiler optimizations (such
as constant propagation or basic slicing [Wei81]), but we believe that additional techniques borrowed
from compilers could make verificationmore efficient (e.g. loop analyses or advanced slicing [SFB07]).

We are also planning to integrate Theta as a verification backend to the Gamma statechart com-
position framework [Mol+18]. This would allow our algorithms to work with higher level engineer-
ing models, such as statecharts. Backward binary interpolation and multiple counterexamples do not
depend on the CFA formalism, while the configurable explicit domain and the error location-based
search could be generalized to statecharts. In our prior work, we also experimented with a specialized
domain that performs abstraction over the structure of statecharts [c15].

82

Chapter3

Modular Specification and Verification

of Smart Contracts
∗

This chapter presents our modular specification and verification approach for Solidity smart con-
tracts. We start by introducing the Solidity language with the underlying Ethereum blockchain and
modular verification in general (Section 3.1). Then, we propose our contributions: an adaptation of
modular specification constructs to the context of smart contracts, domain-specific annotations, a
translation from Solidity to an intermediate verification language, and an efficient bit-precise encod-
ing of arithmetic (Section 3.2). We briefly discuss the implementation of the approach in solc-verify
(Section 3.3) and perform an experimental evaluation (Section 3.4). Then, we put our work in context
with related literature (Section 3.5). Finally, we summarize the thesis, highlight the contributions, and
suggest future directions (Section 3.6).

3.1 Background

In this section, we introduce the background of our work. First, we present the main concepts of
blockchain-based distributed systems (Section 3.1.1) and we introduce Ethereum, a generic decentral-
ized computing platform (Section 3.1.2) with its programming language, Solidity (Section 3.1.3). Then
we describe Boogie, an intermediate verification language serving as our formalism (Section 3.1.4).
Finally, we present the verification approach, namely, modular program verification (Section 3.1.5).

3.1.1 Blockchain-Based Systems

A blockchain-based system is a decentralized, peer-to-peer network of nodes that maintain a shared
database, called the ledger that records transactions. The main goal is to achieve the integrity of the
ledger without trusting any central authority or node. In other words, each node has its own copy of
the ledger locally, but they all agree on its content, i.e. each node has the same view as if there was a
single global state.

The key idea of the blockchain is a validation process, called mining. Nodes can continuously
send transactions to the system. Miner nodes (any node can become a miner) will then take a group
of transactions and organize them into a block. Miners have to solve a computationally intensive1

∗The author was also affiliated with SRI International (https://www.sri.com) during the work described in this thesis.
1This is called proof of work, but alternative protocols (e.g. proof of stake) also exist.

83

https://www.sri.com

3. Modular Specification and Verification of Smart Contracts

puzzle to calculate a valid hash for the block. However, after the hash has been found, the other
participants can easily check its validity. The first miner to find the next block is rewarded, usually
with some amount of cryptocurrency (that was freshly issued and/or collected from transaction fees).
Other nodes then append the new valid block to their local copy. Each block contains the hash of the
previous block (as illustrated in Figure 3.1), and therefore the validity of a hash depends on all the
previous blocks transitively. This makes it practically impossible for a node to modify an older block
and convince other nodes that it is valid.

Previous hash
Transaction 1
Transaction 2

. . .

Transaction n

H
as
h

Block i− 1

Previous hash
Transaction 1
Transaction 2

. . .

Transaction n
H
as
h

Block i

Previous hash
Transaction 1
Transaction 2

. . .

Transaction n

H
as
h

Block i+ 1

µ
. . .

µ µ µ

. . .

Figure 3.1: Illustration of the blockchain. Transactions are organized into blocks with a hash. Each
block transitively depends on all previous blocks by including the hash of the previous block.

An interesting situation arises when different miners validate a new block (with possibly different
transactions) nearly at the same time. In this case, a so-called fork occurs: one portion of the nodes see
one block as the next, while others see the other block. Such situations can be resolved with different
consensus protocols (e.g. always picking the longest fork), but it is out of scope for this thesis.

Early applications of the blockchain focused solely on tracking financial transactions of cryp-
tocurrencies (e.g. the Bitcoin [Nak08]). The next step in the evolution of blockchains was to extend
the blockchain to a setting where the digital money can also be programmable. This is achieved by
generalizing the ledger to allow the deployment of programs (termed smart contracts [Sza94]) that
operate over ledger data. Blockchains with support for smart contracts provide a general distributed
computing platform and allow a set of mutually distrusting parties to execute and enforce their con-
tractual terms (expressed as code) automatically. At the moment, one of the most popular general
platforms is the Ethereum blockchain.

3.1.2 Ethereum

Ethereum [Woo17; AW18] is a generic blockchain-based distributed computing platform. The
Ethereum ledger is a storage layer for a database of accounts (identified by their address) and data
associated with those accounts. There are two kinds of accounts.

• An externally owned account is an account that only has an associated balance and is typically
owned by humans (who have the corresponding private key). The balance is stored in terms of
Ether, the native cryptocurrency of Ethereum.

• A contract account, in addition to its own balance, is also associated with the contract state (data)
and the compiled contract bytecode that can act on its state.

Ethereum contracts are usually written in a high-level programming language, most notably So-
lidity [Eth18], and then compiled into the bytecode of the Ethereum Virtual Machine (EVM) [Woo17].
A compiled contract is deployed to the blockchain using a special transaction that carries the contract
code and sets up the initial state with the constructor. At that point, the deployed contract is issued
an address and stored on the ledger. From then on, the contract is publicly accessible, and its code
cannot be modified.

84

3.1. Background

A user (or another contract) can interact with a contract through its public API by calling public
functions. This can be done by issuing a transaction with the contract’s address as the recipient. The
transaction contains the function to be called along with the arguments, and an execution fee called
gas. Optionally, some value of Ether can also be transferred with transactions. The Ethereum network
then executes the transaction by running the contract code in the context of the contract instance.
Note that this is performed by each miner in parallel, and the result of execution is also verified by
each participant after reaching a consensus. Thus, the Ethereum network can be conceptually viewed
as a single, global computer.

During their execution, each instruction costs some predefined amount of gas. If the contract
overspends its gas limit, or there is a runtime error (e.g. an exception is thrown, or an assertion is
triggered), the entire transaction is aborted and has no effect on the ledger (apart from charging the
sender for the used gas).

3.1.3 Solidity

Themost popular language for writing Ethereum smart contracts to date is Solidity [Eth18]. Figure 3.2
shows an example Solidity contract SimpleBank that illustrates some of the standard features that
Ethereum contracts use in practice. A contract can have state variables, which define the persistent
data that the contract will store on the ledger. The state of SimpleBank consists of a single variable
balances, which is a mapping from addresses to 256-bit unsigned integers. Further Solidity types
include value types, such as Booleans, signed and unsigned integers (of various bit-lengths), addresses,
fixed-size arrays, enumerations, and reference types, such as arbitrary-size arrays and structures. Once
deployed, an instance of SimpleBankwill be assigned its address and since no constructor is provided,
its data will be initialized to default values (in this case, an empty mapping).

1 /// @notice invariant sum(balances) == this.balance

2 contract SimpleBank {

3 mapping(address => uint256) balances;

4
5 function deposit () payable public {

6 balances[msg.sender] += msg.value;

7 }

8
9 function withdraw(uint256 amount) public {

10 require(balances[msg.sender] > amount);

11 if (!msg.sender.call.value(amount)("")) {

12 revert ();

13 }

14 balances[msg.sender] -= amount;

15 }

16 }

Figure 3.2: An example Solidity smart contract implementing a simple bank. Users can deposit and
withdraw Ether with the corresponding functions, and the contract keeps track of user balances. The
top level annotation states that the contract will ensure that the sum of individual balances is equal
to the total balance in the bank.

Contracts define functions that can act on their state. Functions can receive data as arguments,
perform computation, manipulate the state variables, interact with other accounts, and finally return
some values. In addition to declared parameters, functions also have access to a msg structure that

85

3. Modular Specification and Verification of Smart Contracts

contains the details of the transaction. Our example contract defines two public functions deposit
and withdraw. The deposit function is marked as public and payable, meaning that it can be
called by anyone and is allowed to receive Ether as part of the call. This function reads the amount
of Ether received from msg.value and adds it to the balance of the caller, whose address is available
in msg.sender. Uninitialized slots in a mapping have the default value of the value type (which is 0
for uint256). The received Ether is automatically added to the contract balance in the background.

The withdraw function allows users to withdraw a part of their bank balance (as defined by
amount). The function first checks that the sender’s balance in the bank is sufficient using a require
statement. If the condition of require fails, the transaction is reverted with no effect. Otherwise, the
function sends the required amount of Ether funds by using the built-in call function on the caller
address with no arguments (denoted by the empty string). The amount to be transferred with a func-
tion call is set with the value function. Note that the recipient of the call can be another contract.
Contracts can define a special fallback function that gets executed in such cases and can perform ar-
bitrary actions on its own (within the gas limits) and can also fail (indicating it in the return value of
call). If call fails, the whole transaction is reverted with an explicit revert. Otherwise, the balance
of the caller is deducted in the mapping as well. Besides if/else, Solidity includes standard control
structures such as while, do-while, for, break, continue and return with the usual semantics.
Further Solidity features are presented briefly along the discussion of the translation to the verifica-
tion language (Section 3.2.2). The interested reader is referred to the Solidity documentation for more
details [Eth18].

Remark. SimpleBank contains a classic reentrancy vulnerability that can be exploited to steal
funds from the bank. As the control is transferred by call to the caller in line 11, before their balance
is deducted in line 14, they are free to make another call to withdraw to perform a double (or multiple)
spending. Although this flaw seems basic, it is the issue that led to the loss of funds in the DAO
hack [DMH17].

Example. As a concrete scenario, consider Figure 3.3 where an instance of the bank is deployed along
with an attacker (a) and an honest user (u). The balance of each entity is depicted along their line with a
gray background. Furthermore, the content of the mapping inside the bank is included in curly brackets.

Assume, that initially the bank has 0 Ether, while the user and the attacker have 50 each. First, both
the user and the attacker deposits 50 Ether, reducing their balance to 0, and increasing the balance of the
bank to 100. The mapping keeps track that now both a and u have 50 Ether in the bank. Now suppose
that the attacker calls withdraw(50). The require check passes, as balances[a] >= 50. This makes
the bank call call() with a value of 50, reducing its balance to 50 and increasing the balance of the
attacker to 50, while also passing over control. In this situation, nothing prevents the attacker from calling
withdraw(50) again (marked by a warning sign). The problem is that the bank is in an inconsistent
state (the mapping still has 50 for the attacker), and the require check passes again. This will make the
bank call call() again with a value of 50 eventually draining its balance and increasing the balance
of the attacker to 100. The attacker could repeat this process, but suppose now that it is happy with the
outcome and stops. After passing back the control, both calls to withdraw finish by deducting the balance
of the attacker in the mapping. At the second subtraction, there is actually an underflow (marked by ?),
causing the bank to end up in an inconsistent state.

86

3.1. Background

SimpleBank a : Attacker u : User
deposit.value(50)()

50
0

500
{u : 50} 50 deposit.value(50)()

0{a : 50, u : 50} 100
withdraw(50)

require(...)Ë

call.value(50)()
50{a : 50, u : 50} 50

withdraw(50)

require(...) é

call.value(50)()
100{a : 50, u : 50} 0

balances[a]-=50
{a : 0, u : 50} 0

balances[a]-=50
{a : ?, u : 50} 0

Figure 3.3: A possible reentrancy attack scenario against the bank contract in Figure 3.2. Balances and
the content of the internal mapping is displayed along the lines with a gray background.

3.1.4 Boogie IVL

Boogie is an intermediate verification language (IVL) [DL05; Lei08] serving as a layer to build verifiers
for various languages. It was originally developed for Spec# [BLS05], but various frontends have
emerged since then [Lei10; RE14; MSS16].We introduce the relevant features of the Boogie IVL briefly.
For more details, the reader is referred to [DL05; Lei08] and the documentation.2

A Boogie program can define global variables of various types, including Booleans, mathematical
(SMT) integers, bitvectors and SMT arrays [DB09]. Programs can also define procedures with param-
eters and (possibly multiple) return values. A procedure consists of local variable declarations and a
block of statements.

Statements include assignments, havocs,3 procedure calls and control structures such as if-then-
else, while loop, break, and return. The semantics of such statements are similar to what one would
expect from traditional programming languages but are often more restricted. For example, the left
hand side (LHS) of an assignment has to be an identifier to a global/local/return variable, and the right
hand side (RHS) has to be a side effect free expression (e.g. calls are not allowed). Expressions (appear-
ing as part of statements) include literals, identifiers, array read/write, arithmetic, logical operations,
and conditionals.

Example. Figure 3.4a shows a simple Boogie example to illustrate its features. There are two global
variables x and y with integer type. The procedure add takes an integer n, adds n to x and increments y
using a loop until it reaches x. The procedure incr sets x and y to be zero then calls add with one. There
are various specification constructs included in the code, which are introduced next.

2https://boogie-docs.readthedocs.io/
3A havoc statement over a variable assigns a nondeterministic value.

87

https://boogie-docs.readthedocs.io/

3. Modular Specification and Verification of Smart Contracts

1 var x : int;

2 var y : int;

3
4 procedure add(n : int)

5 requires n >= 0;

6 requires x == y;

7 ensures x == y;

8 {

9 x := x + n;

10 while (y < x)

11 invariant y <= x;

12 {

13 y := y + 1;

14 }

15 }

16
17 procedure incr()

18 {

19 x := 0;

20 y := 0;

21 call add (1);

22 assert(x == y);

23 assert(x == 1);

24 }

(a) Boogie program illustrating language
and specification features.

1 var x : int;

2 var y : int;

3 var n : int;

4
5 // add(n)

6 assume(n >= 0); // requires

7 assume(x == y); // requires

8 x := x + n;

9 assert(y <= x); // loop invariant

10 havoc y;

11 assume(y <= x); // loop invariant

12 goto Body , After;

13 Body: // start loop body

14 assume(y < x); // loop condition

15 y := y + 1;

16 assert(y <= x); // loop invariant

17 goto ; // end loop body

18 After: // start after loop

19 assume (!(y < x)); // loop condition

20 assert(x == y); // ensures

21 goto ; // end procedure

22
23 // incr()

24 x := 0;

25 y := 0;

26 // call add (1)

27 n := 1; // set parameter

28 assert(n >= 0); // requires

29 assert(x == y); // requires

30 havoc x; // modified by add

31 havoc y; // modified by add

32 assume(x == y); // ensures

33 // end of call add (1)

34 assert(x == y);

35 assert(x == 1); // cannot be proven

36 goto ; // end procedure

(b) Transformation of the program for modular verification
where specifications, calls and loops have been replaced.

Figure 3.4: A simple Boogie IVL program and its transformation for modular verification.

Specification. The Boogie IVL includes various constructs for specification. Procedures can be an-
notated with pre- and postconditions that must hold respectively before and after the procedure is
called. Loops can be annotated with loop invariants that must hold before and after every iteration of
the loop (including the entry and exit). Furthermore, assert and assume statements can be placed in
procedures. Conditions in asserts must always hold and are checked by verifiers. In contrast, condi-
tions of assumes will not be checked, but just used as being true.

Example. Recall the Boogie program in Figure 3.4a. Procedure add requires its parameter n to be non-
negative and global variables x and y to be equal. This holds when add is called within incr. The loop
invariant in add states that y should not be greater than x before and after every iteration, which holds
due to the preconditions and the increment step of one. In the end, add ensures that x and y are equal.
Finally, incr has two assertions, which also hold after calling add.

88

3.2. Modular Specification and Verification for Solidity

3.1.5 Modular Verification

Modular program verification [Poe97; Mül02] is a technique that enables efficient reasoning for com-
posite programs built up from smaller modules, such as classes, interfaces, objects, and procedures.
This is achieved by checking eachmodule independently (whether it satisfies its specification) by only
relying on the specification of related modules.

Boogie [Bar+06] is a modular verification tool for the Boogie IVL, which treats procedures as
the basic unit of verification.4 Boogie takes programs written in the Booge IVL and translates each
procedure into a verification condition (VC) [BL05], which can be discharged by SMT solvers [BT18;
BHM09]. The verification condition is essentially an SMT formula, which is valid5 if and only if the
procedure satisfies its specification. We discuss the fundamental ideas of VC generation briefly, which
are relevant for the properties (and precision) of modular verification. For more details, the reader is
referred to [BL05] and [Lou+15].

As mentioned previously, each procedure is verified independently. Preconditions are assumed
at the beginning of the procedure, and postconditions are asserted at the end. Furthermore, calls to
other procedures are replaced by their specification at the call site: preconditions are asserted, all
variables modified by the callee are havoced, and the postconditions are assumed [LSS99]. Loops are
also replaced by their specification (the loop invariant) in the following way [BL05]. The key idea is to
first assert the loop invariant (because it must hold before the first iteration). Then, a nondeterministic
choice is made between entering into the loop or jumping afterward. In both cases, the variables
modified by the loop are havoced (to represent arbitrary iterations), and then the invariant is assumed.
If we enter the loop, we assume the loop condition, include the statements of the body, and finally
assert the invariant. If we jump after the loop, we assume the negation of the loop condition and
continue with the program.

Finally, statements can be translated into an SMT formula by introducing a dynamic single as-
signment [Fea91]. This is done by introducing a fresh incarnation [BL05] of the variable after every
update (assign or havoc). Each time a variable is read, its latest incarnation is used. For example, x
:= 1; x := x + 1; becomes x0 := 1; x1 := x0 + 1;. This can be trivially done for programs
with sequential statements only. If there is branching (e.g. goto), some extra incarnations are needed
for unification. For example, if two branches both update x0 to become x1 and x2 respectively, we
introduce x3 := x1 and x3 := x2 respectively to the blocks and use x3 as the latest incarnation
afterwards.

Example. Recall the Boogie program in Figure 3.4a. Figure 3.4b shows the program after specifications,
calls and loops have been replaced (but before dynamic single assignment). The procedure add satisfies its
specification and can be proven using modular verification. However, asserting x == 1 in incr cannot
be proved: the call to add(1) will havoc x and y, and only assume their equality afterwards. Proving x
== 1 would require a stronger postcondition for add, namely that it ensures x == old(x) + n (where
old is a special Boogie expression to refer to the value of a variable at the beginning of the procedure).

3.2 Modular Specification and Verification for Solidity

In this section, we present our contributions, namely a modular specification and verification ap-
proach for Solidity smart contracts. Modular verification is a promising direction due to the transac-
tional behavior of the blockchain. We see Boogie as a suitable representation for Solidity contracts as

4Later a bounded model checker called Corral [LQL12] was also developed.
5A formula is valid if it always evaluates to true. This is equivalent to its negation being unsatisfiable.

89

3. Modular Specification and Verification of Smart Contracts

most of the language elements (e.g. functions, loops) naturally carry over. Furthermore, the extensive
specification possibilities (e.g. pre- and postconditions, invariants) enable a wide range of properties
to be expressed and proved automatically with modern SMT solvers. We adapt existing specifica-
tion annotations to the context of smart contracts but also propose some domain specific extensions
(Section 3.2.1). Then, we discuss the translation of contracts (with annotations) to the Boogie IVL
(Section 3.2.2), including a scalable bit-precise encoding of arithmetic (Section 3.2.2.7).

3.2.1 Specification Annotations

Solidity provides only a few error handling constructs (e.g. assert, require, revert) for the pro-
grammer to specify expected behavior. Therefore, we propose various in-code annotations to spec-
ify contract properties. With the exception of domain-specific extensions, these annotations follow
Solidity expression syntax and typing, making it easy for developers to write and understand the
specification. A simple example contract in Figure 3.5 illustrates the different annotations, which we
discuss in more detail in the rest of this section.

1 /// @notice invariant x == y

2 contract C {

3 int x;

4 int y;

5
6 /// @notice precondition x == y

7 /// @notice postcondition x == (y + n)

8 function add_to_x(int n) internal {

9 x = x + n;

10 require(x >= y); // Catch overflow

11 }

12
13 function add(int n) public {

14 require(n >= 0);

15 add_to_x(n);

16 /// @notice invariant y <= x

17 while (y < x) { y = y + 1; }

18 }

19 }

Figure 3.5: An example Solidity smart contract illustrating the annotation features of our approach,
including contract-level invariants, pre- and postconditions and loop invariants.

3.2.1.1 Contract Invariants

Similar to object and class invariants [Fla+02; Bar+04; LM05], a contract invariant is a constraint
over the state variables of the contract that expresses the consistency of the contract state. These
constraints must hold at any point after the contract has been deployed and can be called. In order
to ensure this, a contract invariant must hold (1) after the contract constructor, (2) after any public
function, and (3) before any call to external contracts (as they might call back). In our approach,
a contract invariant can be any side-effect free Boolean expression having the same scope as the
contract in question (e.g. state variables and this.balance can be referenced). Contract invariants
are written with specific top-level annotations. An example contract invariant is shown in line 1 of
Figure 3.5. During verification, each contract-level invariant is checked (1) as a postcondition to the

90

3.2. Modular Specification and Verification for Solidity

constructor, (2) as pre- and postconditions to every public function, and (3) as an assertion before every
external call. Contract invariants can also be viewed as an inductive property: they must hold initially
(after the constructor), and assuming that they hold before a call, they must also hold afterward.

3.2.1.2 Function Specification with Pre- and Postconditions

As noted above, contract invariants are verified as pre- and postconditions of public contract func-
tions. Additional function-specific annotations can be specified per function. Function preconditions
are Boolean expressions operating over the contract state and function parameters, while postcondi-
tions can additionally include the return value of the function. This allows full specification of private
functions and additional specification of postconditions of public functions.

Annotation of private (or internal) functions can be valuable in several respects. First, during
modular verification functions are usually substituted with their specification. Therefore, if a private
function is not specified, it is assumed that it can perform arbitrary changes to the state, making
verification impossible. This can be overcome to some extent by function inlining, and we do perform
inlining of private functions to a depth of one by default. Secondly, annotations provide a more gas-
friendly alternative to the require and assert statements in the following way. An equivalent way
of ensuring function correctness would be to put the preconditions as requires at the beginning
of the function and having postconditions as asserts at the end of the function. However, these
statements are compiled to EVM checks that run on the blockchain and have a gas cost. In addition,
our annotations can express some features (such as sums) that could not be directly represented in
Solidity. Some examples for pre- and postcondition can be seen above the internal function in lines 6–7
of Figure 3.5.

However, one has to treat preconditions for public functions cautiously. The verifier will simply
assume them, but at runtime, the caller can pass in arbitrary arguments, for which the preconditions
might not hold. Since they are not compiled and checked runtime, the function will continue to ex-
ecute, but the assumptions of the verifier do not hold anymore. Note that this is not a limitation for
private functions. Since they can only be called from the contract itself, the verifier can check if the
preconditions hold at every place where the functions are called.

3.2.1.3 Loop Invariants

As it can be expected, in order to be able to prove properties of contracts that include loops, we allow
the loops to be annotated with invariants. Loop invariants must hold on entry andmust be maintained
by the loop. We provide annotations to express invariants over both for and while loops. These
annotations can access the contract state, variables and parameters of their enclosing function, and
the loop counter. An example is shown in line 16 of Figure 3.5.

In general, loop invariants can be complex and difficult to write by developers. However, due to
the Ethereum execution fees, loops in Solidity contracts tend to be simple and to have a constant
bound. For such loops, we expect that developers can specify invariants easily. Furthermore, existing
techniques for invariant inference and unrolling could also be applied [FM10; Bla+10], but it is out of
scope for this work.

3.2.1.4 Smart Contract-Specific Properties

Working at the level of the Solidity code allows us to extend the specification language with domain-
specific properties that are crucial for describing the contract functionality but otherwise not possible
to express. For example, a large portion of Ethereum smart contracts manage balances of users with

91

3. Modular Specification and Verification of Smart Contracts

respect to some assets. It is often natural and desirable to express (as a contract-level invariant) that
the amount of the individual assets should be equal to the total supply. One example is the contract in-
variant of SimpleBank in line 1 of Figure 3.2, which succinctly expresses the security of the bank and
allows us to identify the reentrancy problem with the contract. The sum function over mappings can-
not be expressed at the level of Solidity as the language does not allow iteration over maps. Similarly,
the sum is also not expressible in first-order logic. We have, therefore, developed a domain-specific
treatment that works for practical examples.

We extended the specification language with a sum function over collections (arrays, mappings).
During translation we introduce a shadow variable sumc that denotes the sum and keeps track of it as
the collection c is changed. Whenever an item in the collection gets updated by c[i] = x;, we also
update the shadow variable by sumc = sumc - c[i] + x;. This way, if the developer refers to the
sum in an annotation, we simply use the shadow variable in place. This shadow sum is an abstraction
of the precise sum that is strong enough to prove many of the properties we are interested in.

3.2.1.5 Correctness

We target functional correctness of contracts with respect to completed6 transactions and different
types of failures. An expected failure is a failure due to an exception deliberately thrown to guard from
the user (e.g. require, revert). An unexpected failure is any other failure (e.g. assert, overflow).
We say that a contract is correct if transactions that do not fail due to an expected failure (1) also do
not fail due to an unexpected failure and (2) satisfy their specification.

Example. The contract in Figure 3.5 is correct. There are no unexpected failures, and all completing
transactions satisfy the specification. Removing, for example, the check in line 10 can result in completed
transactions with overflows. As a further example, removing the statement in line 9 will cause the post-
condition of add to x fail. However, removing the call to add to x in line 15 keeps the contract correct
(as it will not change the state and the specification will still hold).

3.2.2 Translation

In this section, we present the details and properties of our translation from Solidity contracts to the
Boogie IVL. The current work and the experiments are based on Solidity version v0.4.25, supporting
a majority of its features.7 We discuss the translation top-down, from contracts and types, through
state variables and functions, to statements and expressions.

3.2.2.1 Contracts

The input of the translation is a collection of contracts to be verified, and the output is a single Boogie
program with all contracts. We can reason about single and multiple contracts as well. If the code of
all contracts is available, we can take all available annotations into account when reasoning. However,
this can be unsafe as EVM addresses are not typed (any address can be cast to a contract type) and
is to be used with care. We also support inheritance by relying on the compiler to perform flattening
and virtual-call disambiguation. The key idea of the translation is to map contract state variables to
Boogie global variables and contract functions to Boogie procedures.

6Due to the usage of gas, total and partial correctness are equivalent. Furthermore, currently, we do not model gas:
running out of gas does not affect correctness as the transaction is reverted. However, we might model it in the future in
order to verify liveness properties or to be able to specify an upper bound.

7Since then our tool (solc-verify) has been updated to work on v0.5.17 with support for further features.

92

3.2. Modular Specification and Verification for Solidity

3.2.2.2 Types

Solidity offers a variety of types, most of them common in programming languages that are easily
translated to Boogie types. Booleans are simply mapped to the Boolean type of Boogie. Solidity in-
tegers can be either signed and unsigned and can be of different bit-widths (8, 16, 24, . . . , 256 bits).
In contrast, Boogie has mathematical (unbounded, signed) integers. A simple encoding is to map any
Solidity integer to the mathematical integer type of Boogie. This might lead to imprecise analysis, so
we also provide a precise encoding by relying on SMT bitvectors, and a pure arithmetic encoding that
relies on modular arithmetic (detailed in Section 3.2.2.7). Addresses in Solidity are represented with
160-bit integers, so we also treat them as integers in Boogie. Solidity map types are modeled directly
as SMT arrays [McC62; DB09]. Boogie does not have a native array type, so we translate Solidity
array types to a pair of an integer length and an SMT array from integers to their element type.8
Contract reference types are simply represented by addresses. Type checking is already performed by
the compiler so only compatible types can be passed around (e.g. as arguments).

There are additional Solidity types that we do not support yet, such as enumerations, tuples, and
structures, leaving them for future work.9 Events (a logging mechanism) are currently ignored as they
are not relevant for functional correctness.10

3.2.2.3 State Variables

State variables are mapped to global variables in Boogie. However, multiple instances of a contract
can be deployed to the blockchain at different addresses. Since aliasing of contract storage is not
possible [c11], we model each state variable as a one-dimensional global mapping from contract ad-
dresses to their respective type (in essence, treating the blockchain as a heap in a Burstall-Bornat
model [Bor00]). For example, the state variable x with type int at line 2 of Figure 3.6a is translated
to the global variable x with mapping type [address]int at line 1 of Figure 3.6b.

3.2.2.4 Functions

Each function in Solidity is translated to a procedure in Boogie with an additional implicit receiver
parameter [Bar+04] called this, which identifies the address of the current contract instance. As
an example, consider the set function of the Solidity contract A in Figure 3.6a. Updating x in the
Boogie program becomes an update of the map x using the receiver parameter this. Consider also
the call a.set(x) in the Solidity function setXofA. The Boogie program first gets the address of the
A instance corresponding to the current B instance using a[this]. Then it passes this address to the
receiver parameter of the function set.

Functions can be declared view (cannot write state) or pure (cannot read or write state), but these
restrictions are checked by the compiler. Additional user-defined function modifiers are a language
feature of Solidity to alter or extend the behavior of functions. In practice, modifiers are commonly
used to weave in extra checks and instructions to functions. For example, the pay function in Fig-
ure 3.7a includes the modifier onlyOwner (defined in line 4), which performs an extra check before

8Note that this is not precise because assigning SMT arrays has deep copy semantics. In contrast, Solidity has different
memory locations with different copy semantics (deep or reference). Accurate modeling of memory locations and copy
semantics have been added later [c11], but it is out of scope for this thesis.

9Support for enumerations, tuples, and structures has since been added [c11], but they are out of scope for this thesis.
10Contracts can use events to provide an abstract view of their execution (so that their users do not have to run a full

node and replay transactions to get relevant information). In this case events are relevant for functional correctness as the
users need to trust their validity. Support for specifying and verifying contracts with events has since been added [a23], but
it is out of scope for this thesis.

93

3. Modular Specification and Verification of Smart Contracts

calling the actual function (denoted by the placeholder). We simply inline statements of all modifiers
of a function to obtain a single Boogie procedure (e.g. pay procedure in Figure 3.7b).

1 contract A {

2 int public x;

3 function set(int _x) {

4 x = _x;

5 }

6 }

7 contract B {

8 A a;

9 function setXofA(uint x) {

10 a.set(x);

11 }

12 function getXofA ()

13 returns (uint) {

14 return a.x();

15 }

16 }

(a) Solidity contract. Each function is pub-
lic, but the keyword is omitted for brevity.

1 var x: [address]int;

2
3 procedure set(_this: address , _x: int) {

4 x := x[_this :=_x];

5 }

6
7 var a: [address]address;

8
9 procedure setXofA(_this: address , x: int) {

10 call set(a[_this], x);

11 }

12
13 procedure getXofA(_this: address)

14 returns (r: int) {

15 r := x[a[_this]];

16 }

(b) Boogie representation.

Figure 3.6: Solidity contract and its Boogie translation, illustrating the representation of the blockchain
data as a heap and the receiver parameter of functions.

3.2.2.5 Statements and Expressions

Most of the Solidity statements and expressions can be directly mapped to a corresponding statement
or expression in Boogie with the same semantics, including variable declarations, conditionals, while
loops, calls, returns, indexing, unary/binary operations and literals. There are also some statements
and expressions that require a simple transformation, such as mapping for loops to while loops or
extracting nested calls and assignments within expressions to separate statements using fresh tempo-
rary variables. We currently do not support inline assembly and creating new contracts from within
another contract (new expressions). Furthermore, the availability of some arithmetic operations de-
pends on the expressiveness of the underlying domain (e.g. bitwise operations, see Section 3.2.2.7).

3.2.2.6 Transactions

Solidity includes Ethereum-specific functions and variables to query and manipulate balances and
transactions. Some examples can be seen in Figure 3.7 with the corresponding translation. Each ad-
dress is associated with its balance, which can be queried using the balance member of the address.
Correspondingly, we keep track of the balances in a global mapping from addresses to integers (line 1
of Figure 3.7b).

Solidity offers the msg.sender field within functions (line 5 of Figure 3.7a) to access the caller
address. We map this to Boogie by adding an extra parameter msg sender of type address to each
procedure.When a procedure calls another externally, the current receiver address (this) is passed in
as the sender. Internal calls are simply translated as jumps in the EVM, which wemodel by forwarding
the original msg sender.

94

3.2. Modular Specification and Verification for Solidity

1 contract Wallet {

2 address owner;

3
4 modifier onlyOwner () {

5 require(msg.sender == owner);

6 _;

7 }

8 function receive () payable public {

9 // Actions could be performed here

10 }

11 function pay(address to, uint amount) public onlyOwner {

12 to.transfer(amount);

13 }

14 }

(a) Solidity contract.
1 var _balance: [address]int;

2 var owner: [address]address;

3
4 procedure receive(_this: address , _msg_sender: address , _msg_value: int) {

5 _balance := _balance[_this := _balance[_this] + _msg_value];

6 // Actions could be performed here

7 }

8 procedure pay(_this: address , _msg_sender: address , _msg_value: int ,

9 to: address , amount: int) {

10 assume(_msg_sender == owner[_this]); // Inlined modifier

11 assume(_balance[_this] >= amount);

12 _balance := _balance[_this := _balance[_this] - amount];

13 _balance := _balance[to := _balance[to] + amount];

14 }

(b) Boogie representation.

Figure 3.7: A simple wallet, which can receive Ether from anyone but only the owner can make trans-
fers. This example illustrates various Ethereum- and blockchain-specific features in Solidity along
with their representation in Boogie.

Solidity functions marked with the payable keyword (line 8 of Figure 3.7a) are capable of receiv-
ing Ether when called. The amount of Ether received can be queried from the msg.value field. We
model this in Boogie by including an extra parameter msg value and updating the global balances
map at the beginning of the corresponding Boogie procedure (line 5 of Figure 3.7b). When calling a
payable function in Solidity, the amount of Ether to be transferred can be set with the special value
function (e.g. line 11 of Figure 3.2). We translate this to Boogie by reducing the balance of the caller
before making the call and passing the value as the msg value argument.

The functions send and transfer are dedicated functions to transfer Ether between addresses.
We inline these functions by manipulating the global mapping of balances directly. If the recipient
is a contract, a special fallback function is executed, but the gas passed is limited to raising events,
which is irrelevant for functional correctness.11 For example, the transfer in line 12 of Figure 3.7a is

11Gas costs of certain write operations were about to change with Constantinople, allowing a reentrancy attack, but
it was reverted with the St. Petersburg upgrade: blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-
upgrade-announcement.

95

https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement/
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement/

3. Modular Specification and Verification of Smart Contracts

mapped to lines 11–13 in Figure 3.7b. The sender not having enough funds is an expected transaction
failure, which is modeled with an assumption.

The function call can call a function by its name on any address and can also pass arbitrary data.
Since there can be an unknown code behind the called address, we treat such cases as an external
call that can perform arbitrary computation.12 We do not support low-level function calls such as
callcode and delegatecall as it is considered dangerous and would require encoding of the EVM
details (contract layout, EVM semantics).

Solidity exceptions will undo all changes made to the global state by the current call. Deliberately
thrown exceptions (require, revert, throw) are therefore mapped to assumptions in Boogie, which
stop the verifier without reporting an error. In contrast, assertions are used to check for internal
errors: properly functioning code should never reach a failing assert [Eth18]. Consequently, asserts
are mapped to Boogie assertions, causing a reported error when their condition evaluates to false.

3.2.2.7 Encoding of Arithmetic

Integers in Solidity can be signed or unsigned and can be 8, 16, 24, . . . , 256 bits wide. Operations
over integers in typical contracts are mostly mathematical (addition, subtraction, etc.), but Solidity
also supports bitwise operations that are used in real-world contracts to a lesser extent. Depending
on the complexity of operations a contract is using, precise reasoning about integers of such large bit-
widths can be challenging. Therefore, we support three different encoding modes, which we discuss
in the following. An example snippet in Figure 3.8 illustrates the encodings.

1 uint8 x = 255;

2 uint8 y = 1;

3 // Assertion holds

4 assert(x + y == 0);

(a) Solidity code.

1 var x: int;

2 var y: int;

3 x := 255;

4 y := 1;

5 // Assertion does not hold

6 assert(x + y == 0);

(b) Boogie encoding with SMT integers.

1 var x: bv8;

2 var y: bv8;

3 x := 255bv8;

4 y := 1bv8;

5 // Assertion holds

6 assert(bv8add(x, y) == 0bv8);

(c) Boogie encoding with SMT bitvectors.

1 var x: int;

2 var y: int;

3 x := 255;

4 y := 1;

5 assume (0 <= x && x <= 255);

6 assume (0 <= y && y <= 255);

7 // Assertion holds

8 assert ((if (x + y >= 256)

9 then (x + y - 256)

10 else (x + y)) == 0);

(d) Boogie encoding with SMT integers and
modular arithmetic.

Figure 3.8: An example Solidity snippet with different arithmetic encodings in Boogie.

Mathematical integers. By default, Boogie treats the integer type as unbounded mathematical
integers (Figure 3.8b). This representation allows scalable reasoning with SMT solvers, especially in

12Contract invariants are also asserted before external calls as they can perform a callback to the contract.

96

3.2. Modular Specification and Verification for Solidity

the case where the constraints are linear [DM06], with much progress being made in recent years on
also solving the nonlinear constraints [Rey+17; Jov17]. Therefore, by default, we resort to encoding
all Solidity integer types to unbounded integers.

The caveat of this encoding is that it does not support bit-precise operations and that the types and
operations are not sound for representing the semantics of Solidity integers (e.g. operations do not
overflow). Therefore, verification results should be treated with extreme caution in this case, as they
can result in both false alarms and unsound proofs. For example, unsigned integers are guaranteed
to be non-negative in Solidity, but the mathematical integers can be possibly negative, causing a
false alarm. However, if the contract does not include any bitwise operations, and the programmer is
confident that no arithmetic operations go out of range (e.g. by manually checking ranges or using a
library like SafeMath [Dou17]), this encoding might be a good fit.

Bitvectors. In order to support exact semantics for Solidity arithmetic, we also provide the en-
coding that uses the SMT theory of bitvectors to model the integer types and operations over them
(Figure 3.8c). This permits to translate almost all Solidity operations (including bitwise operations) to
SMT in a fairly straightforward manner but might suffer from scalability issues.

While modern SMT solvers are remarkably efficient on bitvector problems from software appli-
cations, the SMT problems arising from Solidity contracts can be much more challenging due to the
default integer bit-width of 256 bits. In this setting, if the contract code relies on nonlinear mathemat-
ical operations (such as multiplication or division), scalability starts to deteriorate for sizes as small
as 16 bits. We provide evidence of this in our evaluation (Section 3.4).

Modular arithmetic. In order to strike a balance between precision and scalability, we also pro-
pose an encoding of integers that models Solidity integers as unbounded integers in Boogie but adds
additional constraints to model the precise semantics: the allowed value ranges and the wraparound
semantics (Figure 3.8d). To track ranges, we associate a type condition (TC) to each integer variable
denoting its exact range. Every operation over integer variables is then performed by first assuming
the TCs and then performing the corresponding operation in arithmetic modulo the TC range with
additional constraints to adjust the results for special cases and signed integers (Figure 3.9). This ap-
proach is further sound across all arithmetic expressions since, if the inputs are assumed in the correct
range, the results of the operations produce further values in the proper intervals.

The advantage of this approach is that the scalability of reasoning is less dependent on the bit-
width, with efficient reasoning also available for example on nonlinear operations over 256-bit inte-
gers. We illustrate this in Section 3.4.

Detection of overflows. Neither the EVM nor Solidity perform any checking of the results of
arithmetic operations by default. Due to the wraparound semantics of integers, this allows unex-
pected overflows and underflows to occur undetected (e.g. the infamous BEC token [Dat18]). With an
appropriate model of arithmetic, we provide a scalable solution to overflow detection with minimal
false alarms.

In general, overflows can be detected by checking the result of every operation after it has been
computed. However, reporting every such overflow would result in an overwhelming number of false
alarms. For example, it is common practice for Solidity developers to perform arithmetic operations
first and then check for overflows manually after the fact (see, e.g. line 10 of Figure 3.5). This practice
of overflow detection is an integral part of the SafeMath library [Dou17] that is used in almost all

97

3. Modular Specification and Verification of Smart Contracts

deployed contracts on the Ethereum blockchain and is part of Solidity best practices [Con18]. Report-
ing such potential overflows would be a nuisance to the programmer who has already put effort into
guarding against it. For example, the potential overflow in line 9 of Figure 3.5 should not be reported
because in the very next line the programmer guards the overflow and reverts the transaction.

To reduce the number of false overflow reports, we use the following approach. Whenever an
arithmetic computation is performed, we compute the overflow condition that captures whether the
overflow has occurred (i.e. if the result of the calculation in modular arithmetic is different from
the result over unbounded integers). However, instead of immediately checking this condition, it is
accumulated in a dedicated Boolean overflow-detection variable. We then check for overflow at the
end of every basic block with an assertion. This “delayed checking” gives space to developers to
perform manual checking for the overflow (in which case the assertion will not trigger), avoiding
false alarms.

addU,b(x, y) := x+ y − 2b if x+ y ≥ 2b

x+ y otherwise

addS,b(x, y) := x+ y − 2b if x+ y > 2b−1 − 1
x+ y + 2b if x+ y < −2b−1

x+ y otherwise

subU,b(x, y) := x− y if x ≥ y
x− y + 2b otherwise

subS,b(x, y) := x− y − 2b if x− y > 2b−1 − 1
x− y + 2b if x− y < −2b−1

x− y otherwise

mulU,b(x, y) := x · y mod 2b if x · y ≥ 2b

x · y otherwise

mulS,b(x, y) := p− 2b if p > 2b−1 − 1
p otherwise
where p = (if x ≥ 0 then x else x+ 2b) · (if y ≥ 0 then y else y + 2b) mod 2b

divU,b(x, y) := x/y

divS,b(x, y) := x/y − 2b if x/y > 2b−1 − 1
x/y + 2b if x/y < −2b−1

x/y otherwise

minusU,b(x) := 0 if x = 0
2b − x otherwise

minusS,b(x) := −2b−1 if x = −2b−1

−x otherwise

Figure 3.9: Modeling precise wraparound semantics of arithmetic in modular encoding mode. Each
operation is defined for signed (S) and unsigned (U) operands x, y with b bits.

Example. As an example, consider the function add to x in Figure 3.5. Its encoding with modular
arithmetic and overflow checking can be seen in Figure 3.10. For the simplicity of the presentation, we
omit the receiver parameter (this) from state variables, and we are assuming 8 bit integers. A global

98

3.3. Implementation

Boolean flag keeps track of the overflow. The function begins by requiring that there are no overflows
before calling. It also requires the range assumptions (TC) for the variables it uses and the user-defined
precondition (x == y). The function ensures that there is no overflow, and its postcondition (x == y +

n) holds. The postcondition is also checked with modular arithmetic, and an extra ensures clause checks
that no overflow occurs in this calculation (y + n is the same with integers and modular arithmetic).
Increasing x by n is translated using modular arithmetic, and an extra statement updates the overflow
flag if the modular result is different than the integer result. However, this flag is only asserted at the end
of the function (ensures clause). Thus, the require in the original function (translated into an assume)
can catch the overflow before.

1 function modaddS8(x : int , y : int) returns (int) { // Signed , 8 bit add

2 if x + y > 127 then x + y - 256

3 else (if x + y < -128 then x + y + 256

4 else x + y)

5 }

6 var _overflow: bool; // Overflow flag

7 var x: int;

8 var y: int;

9
10 procedure add_to_x(n: int)

11 requires !_overflow; // No overflow before

12 requires -128 <= x && x <= 127; // TC for x

13 requires -128 <= y && y <= 127; // TC for y

14 requires -128 <= n && n <= 127; // TC for n

15 requires x == y; // Precondition

16 ensures !_overflow; // No overflow after

17 ensures x == modaddS8(y, n); // Postcondition

18 ensures y + n == modaddS8(y, n); // No overflow in postcondition

19 {

20 _overflow := _overflow || x + n != modaddS8(x, n);

21 x := modaddS8(x, n);

22 assume (x >= y);

23 }

Figure 3.10: A (simplified) encoding of the function add to x of Figure 3.5, illustrating the delayed
overflow check.

3.3 Implementation

We implemented our modular specification and verification approach in an open-source tool named
solc-verify.13 An overview of the architecture is shown in Figure 3.11. solc-verify extends the orig-
inal compiler (written in C++) with a translation module for the Boogie IVL, and a Python wrapper
script that calls the extended compiler, runs Boogie, and maps back the results to the original con-
tracts. The translation and the experiments in this thesis are based on Solidity v0.4.25, but since then,
solc-verify has been updated to v0.5.17 with support for additional features, most notably precise
modeling of memory and reference types [c11].

13https://github.com/SRI-CSL/solidity

99

https://github.com/SRI-CSL/solidity

3. Modular Specification and Verification of Smart Contracts

Extended
compiler

Boogie
verifier

Back
annotation

SMT solver
cvc4 yices2 z3

Solidity contracts
with specifications

Verification
results

Boogie
program

Intermediate
results

Verification
conditions

Wrapper script

Flags

Figure 3.11: Overview of the solc-verify modules. The extended compiler creates a Boogie program
from the Solidity contract, which is checked by the Boogie verifier using SMT solvers. Finally, results
are mapped back and presented at the Solidity code level.

Translation to Boogie. solc-verify takes a set of Solidity contracts, including specification anno-
tations. It relies on the Solidity compiler that parses the contracts and builds an abstract syntax tree
(AST) where names, references, and types are resolved. The compiler assigns a unique identifier (an
integer) to each element in the AST. We append this identifier to the name of Boogie declarations (e.g.
variables and procedures) to avoid name collisions within the same contract (e.g. state variable and
function parameter) and across contracts (e.g. functions with the same name).

The compiler also performs type checking and enforces additional constraints (e.g. visibility). A
further advantage of working inside the compiler is that the internal AST contains various extra
information, such as the linearized order of constructors or the nature of function calls (internal/ex-
ternal). This makes it easier to follow the semantics of Solidity precisely. We also reuse the compiler
to build ASTs for the specification expressions extracted from comments. This way, we can also report
meaningful error messages for invalid expressions (e.g. unknown identifiers, wrong types).

solc-verify traverses the internal AST using a visitor and produces a Boogie representation of the
program, as discussed in Section 3.2.2. The arithmetic encodingmode (integers, bitvectors or modular;
see Section 3.2.2.7) can be specified with a command line flag. The Boogie program is serialized into
a temporary file and passed to the Boogie verifier.

Boogie and SMT. Boogie performs modular verification by transforming the program into ver-
ification conditions (VCs) and discharging them using SMT solvers (as decribed in Section 3.1.5).
By default, Boogie can use z3 [MB08] and cvc4 [Bar+11] but we also extended it14 to support
yices2 [Dut14]. A notable feature of our encoding is that it allows quantifier-free VC generation,
permitting to use SMT solvers that do not support quantifiers (e.g. yices2). Boogie reports violated
annotations and failing assertions with respect to the Boogie program, and solc-verify maps these
errors back to the Solidity code using traceability information. The final output of solc-verify is a
list of errors corresponding to the original contracts (e.g. line numbers, function names).

3.4 Evaluation

In this section, we evaluate our modular verification and specification approach on various real-life
examples. We formulate the following three research questions for the evaluation.

14Our extension has been merged to the main repository: https://github.com/boogie-org/boogie/pull/99.

100

https://github.com/boogie-org/boogie/pull/99

3.4. Evaluation

RQ1 What portion of real-world contracts can solc-verify cover with the currently supported lan-
guage features?

RQ2 Can solc-verify find bugs in unannotated contracts by only using assertions and overflows as
an implicit specification?

RQ3 Can solc-verify find bugs or prove functional correctness of annotated contracts?
Table 3.1 summarizes the evaluation goals, contracts and the observed output. In RQ1 (Sec-

tion 3.4.1), we observe the coverage of currently-supported language features and scalability by ex-
amining the (unannotated) contracts currently deployed on the Ethereum blockchain (available from
Etherscan). Then, in RQ2 (Section 3.4.2) we pick a subset of the unannotated contracts and manually
check what our approach can report on them. Finally, RQ3 (Section 3.4.3) examines two contracts
that had been exploited in the past, and show how our approach could have found the issues, with
minimal annotation burden, and prove that the fixed versions of the contracts are correct.

Table 3.1: Summary of the evaluation goals, the models used and the observed output.

Goal Contracts Observed

RQ1 Language coverage Etherscan Translation success, runtime
RQ2 Bug finding in unannotated contracts Etherscan True and false positives
RQ3 Annotating and checking contracts Bank, Token Verification result

We used commit cc913e3 of solc-verify15 and a custom version of Boogie16 that also supports
yices2. Furthermore we used cvc4 commit b396d78, yices2 version 2.6.1 and z3 version 4.8.4.

3.4.1 RQ1: Language Coverage

To analyze the coverage of currently-supported language features and the scalability of solc-verify,
we collected 37531 contracts available on Etherscan.17 These contracts were compiled with various
versions of the Solidity compiler, and not all of them are supported by version 0.4.25 that solc-verify
used at the time of performing the experiment. We, therefore, selected 7836 contracts that do compile.
While these contracts only represent roughly 21% of all the available contracts, we believe that these
are the most relevant. Due to the practical immutability of contracts, formal verification should nor-
mally be applied during development, which is usually done with the current stable compiler version.
Measurements were executed on a machine with 4 pieces of 8 core (3.30 GHz) Intel Xeon E5-4627 v2
CPUs and 1 TB of RAM.

The results of running solc-verify on the selected contracts are shown in Table 3.2. Columns
correspond to different arithmetic modes, with the last column representing modular arithmetic with
overflow checking enabled. The first row shows that roughly 50% of the contracts can be success-
fully translated to Boogie in each mode. Contracts that cannot be translated contain constructs not
yet handled by solc-verify, such as structures, enumerations, or special transaction and blockchain
members. Some features (e.g. exponentiation, bitwise operations) also depend on the arithmetic mode,
resulting in slight differences in feature coverage. The remaining three rows show the number of
contracts for which solc-verify terminates within 10 seconds with a given SMT solver as a backend.
Note that the effectiveness of the different SMT solvers on this set of contracts should be taken with a

15https://github.com/SRI-CSL/solidity
16https://github.com/dddejan/boogie, commit 928098c
17Downloaded from https://etherscan.io, also available at http://csl.sri.com/users/dejan/contracts.tar.gz.

101

https://github.com/SRI-CSL/solidity/commit/cc913e3
https://github.com/CVC4/CVC4/commit/b396d78
https://github.com/SRI-CSL/yices2/releases/tag/Yices-2.6.1
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.4
https://github.com/SRI-CSL/solidity
https://github.com/dddejan/boogie
https://github.com/dddejan/boogie/commit/928098c
https://etherscan.io
http://csl.sri.com/users/dejan/contracts.tar.gz

3. Modular Specification and Verification of Smart Contracts

Table 3.2: Etherscan results with different solvers and arithmetic encodings. Each cell represents the
number of successfully processed contracts (of 7836 total) and the average execution time per contract.

Arithmetic encoding Integer Bitvector Modular Mod. overflow

Translated 4096 3919 3926 3926

cvc4 4090 (0.71s) 3837 (0.99s) 3921 (0.72s) 3911 (0.79s)
yices2 3892 (1.15s) 3854 (0.86s) 3903 (0.75s) 3859 (0.87s)
z3 3897 (1.24s) 3831 (1.10s) 3892 (0.87s) 3894 (0.88s)

grain of salt. For example, the bitvector encoding seems to be nearly as efficient as modular arithmetic.
However, this is because the assertions in these contracts do not depend on complex (e.g. nonlinear)
arithmetic. With more complex invariants, the bitvector encoding becomes infeasible for reasoning,
as we demonstrate it with the BEC token example later in Section 3.4.3. The takeaway of these re-
sults is that the average execution time per contract is around a second, meaning that solc-verify is
applicable and efficient for a significant amount of real-world contracts, but scalability might depend
on the complexity of the properties.

3.4.2 RQ2: Unannotated Contracts

The contracts available at Etherscan are not annotated and solc-verify can only consider assert and
require statements, and overflows as implicit specification. Furthermore, the ground truth about the
contracts (whether they are correct or not) is unknown. Nevertheless, we systematically selected a
subset of the contracts and manually checked the results given by solc-verify.

We took all 3897 contracts that solc-verify could translate and process with z3 in integer mode.
At first glance we discovered that a majority of the contracts (2754) use the popular SafeMath li-
brary [Dou17], which has just recently adopted the proper usage of assert and require.18 We
updated these contracts to properly guard against user input with require (instead of assert). Af-
terwards, we checked for assertion failures and overflows using solc-verify.

Assertion checking. Surprisingly, only 88 contracts (out of the 3897) contain assertions. solc-
verify reported an error for 80 contracts, which we all checked manually. Out of those errors, 78
are clearly false alarms caused by a bad specification – the developer wrote assert where require
should have been used – and fit into one of the following categories:

• Enforcing input validity with assertion (e.g. input arrays are of equal size).
• Enforcing time locks with an assertion (e.g. now > 100).
• Enforcing success of functions calls with an assertion (e.g. addr.call()).
• Enforcing permissions with an assertion (e.g. checking msg.sender).
• Enforcing correct result of arithmetic operations with an assertion.

As described in the Solidity documentation [Eth18] assert should only be used to check for internal
errors and invariants, and all cases highlighted above should use require instead. After replacing
the spurious assertions with require, solc-verify reports no false alarms.

The two reported errors worth discussing inmore detail are illustrated in Figure 3.12. The example
in Figure 3.12a is a pre-sale contract that accepts Ether until a sale cap is reached. The invariant of
the contract, i.e. that (raised <= max) is enforced with a (stronger) assertion at the beginning of

18For discussion, see https://github.com/OpenZeppelin/openzeppelin-solidity/issues/1120.

102

https://github.com/OpenZeppelin/openzeppelin-solidity/issues/1120

3.4. Evaluation

the function. It could be argued that this fits within the mentioned prescribed usage for the assert
construct. However, as solc-verify performs modular analysis, and nothing is assumed about the
state before a function call, it will report such an assertion as a potential error. To fix this, the invariant
(raised <= max) should be specified as a contract invariant, and require should be used to check
the stronger precondition at function entry (followed by an assert at the end of the function).

The example in Figure 3.12b is a token transfer function. The function checks whether the sender
has enough balance, and then it transfers the tokens to the recipient. Finally, the assertion checks that
no overflow has occurred using an assert statement on the result of the addition. As is, solc-verify
reports an error because increasing the balance of the recipient might overflow. As argued above, if
the purpose of the assertion is to guard against overflows, require should be used instead. On the
other hand, one could argue that for fixed-cap tokens, such an overflow should never occur since no
address can hold enough tokens to trigger the overflow. This assumption can be explicitly specified,
i.e. by stating a contract invariant sum(balances) <= cap. With this invariant, solc-verify avoids
the false alarm by inferring that overflow is no longer possible.

1 uint max = 1000 ether;

2 uint raised = 0;

3
4 function () payable {

5 assert(raised < max);

6 require(msg.value != 0);

7 require(raised + msg.value

8 <= max);

9 raised += msg.value;

10 }

(a) Pre-sale contract example.

1 mapping (address => uint) balances;

2
3 function transf(address to, uint val) {

4 require(balances[msg.sender] >= val);

5 require(msg.sender != to);

6 balances[msg.sender] =

7 balances[msg.sender] - val;

8 balances[to] = balances[to] + val;

9 assert(balances[to] >= val);

10 }

(b) Token transfer example.

Figure 3.12: Examples of potentially failing assertions reported by solc-verify.

Overflow checking. We also checked for overflows and manually verified the results for the 68
contracts (out of 3897) that had at least 100 transactions in the past. solc-verify reports 33 errors
out of which 29 are false alarms and 4 can be considered as real. All false alarms are due to implicit
assumptions on the magnitude of the numbers used. There are 20 false alarms due to missing range
assumptions for array lengths causing false overflow alarms for loop counters. For example, in a loop
for (uint i = 0; i < array.length; i++) solc-verify reports that i++might overflow. It is
reasonable to assume that array lengths remain small due to the gas costs associated with growing an
array. After adding these extra assumptions, these errors are no longer reported. Other false alarms are
caused by implicit assumptions on Ether balances or time. For example, it is assumed that a counter
for the total amount of Ether received by a contract, or multiplying msg.value by 20000 cannot
overflow because the amount of Ether is limited. Similarly, adding days or even weeks to the current
timestamp will not overflow any time soon. We plan to include such implicit assumptions to a limited
extent but, in general, it is best if the developer explicitly specifies them. The four issues found that
could be considered real are the following:

• A pre-sale contract sets the hardCap in its constructor based on a cap provided as argument
with hardCap = cap*(10**18). Although the constructor is only called once by the deployer,
providing a large cap can result in an unintentional overflow.

103

3. Modular Specification and Verification of Smart Contracts

• A crowd-sale contract sets the unit cost based on the argument perEther by calculating
unitCost = 1 ether / (perEther*10**8). The problematic function is guarded so that
it can only be called by the contract owner. Nevertheless, overflow can happen and can lead to
an inconsistent unit price.

• A utility contract for mass distribution of tokens has a function to transfer an array of values to
an array of recipients as a batch. The total amount transferred is kept accumulated in a contract
counter and can overflow. However, as the counter is not used otherwise, the overflow might
be benign.

• A food store contract first calculates the cost based on the bundles ordered, by computing cost
= bundles * price, where bundles is provided by the caller. The function then checks if
msg.value >= cost holds, but this check can be bypassed with the overflow, opening the
door for a potential exploit.

3.4.3 RQ3: Annotated Contracts

While solc-verify can find violations to implicit specifications (assertions, overflows) in unannotated
contracts, its main target is to allow developers to check custom, high-level functional properties
through annotations. We demonstrate this by annotating two contracts, finding bugs, and proving
the correctness of the fixed versions.

Reentrancy detection (DAO). Reentrancy is a common source of vulnerabilities and the cause
of the infamous DAO bug [DMH17]. As explained in Section 3.1.3, the SimpleBank contract pre-
sented in Figure 3.2 suffers from the same reentrancy bug. Using solc-verify, the developer can
specify the consistency of the bank contract state through a contract-level invariant, and solc-verify
can detect the bug. For example, we can annotate the contract with a property sum(balances) ==

this.balance. As the balance of the contract is deducted before the external call, the contract in-
variant is violated, and solc-verify reports a (real) error. However, if the user fixes the issue by first
reducing the balance of the recipient in the mapping and then transferring the amount, the invariant
will hold before making the external call, and solc-verify proves the specification successfully. For
both the buggy and correct versions of the contract, the verification with solc-verify is instant.

Overflow detection (BEC token). We now consider the BEC token vulnerability [Dat18] that has
also been exploited and resulted in significant financial losses. The relevant part of the contract is
shown in Figure 3.13. The contract is a typical token contract, tracking balances of users in terms
of their BEC tokens and allowing transfers of tokens between users. The function batchTransfer

shown in the figure is intended to be used for transferring some value of BEC tokens to a group
of recipients in a batch. To do so, the contract multiplies the requested value with the number of
recipients. Unfortunately, this multiplication can result in an overflow (line 20), causing the total
transfer amount to be invalid (e.g. 0). This allows attackers to “print” large amounts of tokens and
send them to other users while keeping their own balance constant. Running solc-verify with the
modular encoding of arithmetic successfully detects the overflow issue of BEC token and does not
report any other potential overflows. After fixing the contract (line 21), solc-verify shows that no
overflows are possible.

We also annotated the BEC contract with a specification that the contract maintains the cor-
rect token balances throughout the operation. As before, we add the invariant totalSupply ==

sum(balances) to the contract, and adapt it to the loop invariant. The loop invariant introduces
extra complexity as it involves nonlinear arithmetic and illustrates the need for precise reasoning at

104

3.4. Evaluation

large bit-sizes. Running solc-verify on the annotated contract in the bitvector mode does not termi-
nate regardless of the SMT solver used.19 On the other hand, using modular arithmetic with overflow
detection solc-verify discharges all VCs (with 256-bit integers) in seconds for both the buggy and
correct version of the contract (with cvc4).

1 library SafeMath {

2 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

3 uint256 c = a * b;

4 require(a == 0 || c / a == b);

5 return c;

6 }

7 // Similar for add , sub , div

8 }

9
10 /// @notice invariant totalSupply == sum(balances)

11 contract BecToken {

12 using SafeMath for uint256;

13
14 uint256 public totalSupply;

15 mapping(address => uint256) balances;

16
17 function batchTransfer(address [] _receivers , uint256 _value) public

18 returns (bool) {

19 uint cnt = _receivers.length;

20 uint256 amount = uint256(cnt) * _value; // Overflow

21 // uint256 amount = uint256(cnt).mul(_value); // Correct version

22 require(cnt > 0 && cnt <= 20);

23 require(_value > 0 && balances[msg.sender] >= amount);

24 balances[msg.sender] = balances[msg.sender].sub(amount);

25 /// @notice invariant totalSupply == sum(balances) + (cnt - i) * _value

26 /// @notice invariant (i <= cnt)

27 for (uint i = 0; i < cnt; i++) {

28 balances[_receivers[i]] = balances[_receivers[i]].add(_value);

29 }

30 return true;

31 }

32 }

Figure 3.13: Annotated part of the BEC token contract relevant for the “batchOverflow” bug [Dat18].
While the contract uses the SafeMath library for most of its operations, there is a multiplication in
line 20 that can overflow.

Other tools. As far as we know, solc-verify is the only available tool that can reason effectively
and precisely about Solidity code with specifications. The Solidity compiler includes an experimental
SMT checker [AR18], which is currently limited to basic require/assert and overflow checking. For
the BEC token, the latest version (v0.5.10) reports every arithmetic operation as a potential overflow,
including all false alarms in the SafeMath library. It cannot detect the reentrancy issue in the Simple-
Bank example because external calls and the revert function is not supported. Furthermore, it incor-
rectly reports that the condition for revert is always true (possibly because call is skipped and the de-
fault return value is false). Zeus [Kal+18] is not available publicly for comparison. VeriSol [Wan+20]

19With bit-size of 16 bits, z3 can discharge the VCs in 2295s while other solvers do not terminate.

105

3. Modular Specification and Verification of Smart Contracts

(as of April 2019) does not support libraries (like SafeMath) or the call function, which can cause
reentrancy so we could not apply it to our examples.

Two notable static analysis tools areMythril [Mue18] and Slither [FGG19].Mythril (v0.20.0)
correctly reports the overflow issue with the BEC token in 200s, but it also reports all spurious over-
flows.Mythril detects the reentrancy issue with the bank contract, but it also reports the same issue
with the corrected version of the contract. Slither (v0.5.2), on the other hand, has a dedicated DAO-
like reentrancy issue check and correctly handles both the buggy and correct version of the bank
contract. However, Slither does not support overflow checking and therefore does not detect the
BEC token issue.

Our goal, as demonstrated by the annotated examples, is to provide a tool that allows developers to
check their own high-level annotations and business logic properties. This makes solc-verify good
complementary to other automated verification tools that mainly target well-known vulnerability
patterns.

3.5 Related Work

The popularity of blockchain technology and many high-profile attacks and vulnerabilities have put
the focus on the need for formal verification for smart contracts [ABC17; HK18; MCJ18; Che+20]. We
mention prominent advances relying on vulnerability patterns, theorem provers, finite automata, and
SMT, and relate them to our work.

Vulnerability pattern-based approaches. Bhargavan et al. [Bha+16] translate a fragment of So-
lidity and EVM to F∗ and use its type and effect system to check for vulnerable patterns and gas bound-
edness. Grishchenko et al. [GMS18] extend this work on EVM by checking security properties such
as call integrity, atomicity, and independence from miner controlled parameters. Securify [Tsa+18]
decompiles EVM and infers data- and control-flow dependencies in Datalog to check for compliance
and violation patterns. Oyente [Luu+16] is a symbolic execution tool that can check various pat-
terns, including transaction ordering dependency, timestamp dependency, mishandled exceptions,
and reentrancy. Maian [Nik+18] uses symbolic analysis with concrete validation over a sequence of
invocations to detect fund locking, fund leaking, and contracts that can be killed. Mythril [Mue18]
uses symbolic analysis to detect a variety of security vulnerabilities. Slither [FGG19] is a static anal-
ysis framework with dedicated vulnerability checkers. Approaches based on vulnerability patterns,
like the ones mentioned above, can be effective at discharging specific properties but are limited to
built-in patterns (or a domain-specific language [Tsa+18]). Furthermore, as they are mainly EVM-
based, it makes reasoning about more general properties difficult. Our approach focuses on Solidity
and allows high-level, user-defined properties to be checked effectively.

Theorem prover-based approaches. Kevm [Hil+18] is an executable formal semantics of EVM
based on the K framework [RŞ10] including a deductive program verifier to check contracts against
given specifications. Hirai [Hir17] formalizes EVM in Lem, a language used by various theorem
provers, and proves properties using interactive theorem proving. Scilla [Ser+19] is an intermedi-
ate language between smart contracts and bytecode, using the Coq proof assistant for reasoning.
Theorem prover-based approaches offer the ability to capture precise, formal semantics of the con-
tracts but can be cumbersome as properties also need to be formalized in the language of the theorem
prover. Moreover, user interaction and assistance is usually required impeding usability for contract

106

3.6. Summary and Future Work

developers.20 In our approach, the developer can specify the properties directly within the contract
as Solidity annotations and modular verification is fully automated. Although loop invariants might
be required, complex loops are rare in contracts.

Automata-based approaches. FSolidM [ML18] is a finite state machine-based designer for smart
contracts that can generate Solidity code. Security features and design patterns (e.g. locking, access
control) can be included in the state machine. Abdellatif and Brousmiche [AB18] model contracts and
the blockchain manually in BIP and use statistical model checking to simulate uncertainties in the
environment. Such model-based approaches are orthogonal to our method, as we are working on the
source code directly. This has the advantage that developers do not need to learn a new (modeling)
language, and an extra step of transformation (from model to source) is eliminated.

SMT-based approaches. Zeus [Kal+18] translates Solidity to LLVM bitcode and employs exist-
ing verifiers such as SeaHorn [Gur+15] and Smack [RE14]. Besides certain vulnerability patterns, it
claims to have support for user-defined properties to some extent. However, it is not publicly available
for comparison. VeriSol [Wan+20] checks for conformance between workflow policies and smart
contract implementations on the Azure blockchain. While the core of their method is a translation to
Boogie (similar to ours), it targets a specific problem limited in scope and does not yet support features
needed for typical smart contracts (see Section 3.4.3). The Solidity compiler itself also includes a built-
in experimental SMT checker [AR18], which executes the body of each function symbolically and
checks for implicit specifications, such as assertion failures, dead code and overflows. Their approach
is however, limited, by false overflow alarms and missing features (e.g. call, revert). Furthermore, it
has no support for developer-supplied specification beyond require and assert statements. Some of
the challenges they mention in their future work are solved by our approach, including contract-level
invariants and the reduced number of false overflow alarms.

3.6 Summary and Future Work

In this thesis, we presented a modular specification and verification approach for smart contracts
written in Solidity. We implemented our approach in the solc-verify tool and investigated its ap-
plicability on several real-life examples by finding bugs, fixing them, and proving correctness with
minimal user effort. My contributions are summarized as follows.

Thesis 3 I defined a modular specification and verification approach for smart contracts by
annotating and translating them to an intermediate verification language.
3.1 I adapted existing modular specification constructs to the context of smart contracts.
3.2 I proposed domain-specific annotations for the modular specification and verification of

smart contracts.
3.3 I introduced a mapping from the Solidity contract-oriented programming language to the

Boogie intermediate verification language.
3.4 I described a modular arithmetic encoding that supports scalable bit-precise reasoning on

arithmetic operations.

20For an example of the difficulties in manually analyzing even trivial issues, see https://runtimeverification.com/blog/
erc-20-verification/.

107

https://runtimeverification.com/blog/erc-20-verification/
https://runtimeverification.com/blog/erc-20-verification/

3. Modular Specification and Verification of Smart Contracts

Joint work. Dejan Jovanović was taking part in this research as my internship supervisor at SRI In-
ternational. He was also responsible for downloading contracts and running the tool on them.Michael
Emmi and Gabriela Ciocarlie also helped with their feedback and advice during our discussions.

Publications. The results and the implementation were presented at the VSTTE 2019 confer-
ence [c10]. I also gave a developer-oriented talk about the usage of the tool at the 2020 Solidity Sum-
mit.21 A paper on precise support for reference types (arrays, structs) and different memory locations
was published at the ESOP 2020 conference [c11] and was also accepted for presentation at the SMT
2020 workshop.22 Furthermore, a US patent including (but not limited to) my results was also filed in
December 2018 and is currently pending.

Applications. The specification and verification approach is implemented in the open-source solc-
verify tool [c10]. solc-verify has been used in a project (TÉT-16-PT) in collaboration with the Uni-
versity of Coimbra. The goal of the project was to inject faults into smart contracts and assess their
impact on the system. Results indicated that using solc-verify in the workflow could significantly
reduce the number of undetected errors.

Furthermore, solc-verify has also been used to check for behavioral simulation between different
smart contracts implementing the same interface [Bei+20].

Future work. While modular verification has a sound mathematical basis, the translation from
the high-level Solidity language to Boogie must precisely model the semantics. Hence, an important
direction of future work is to formalize the translation and prove its soundness. Some aspects of the
memory model and reference types have been formalized [c11], which could be continued for the rest
of the translation.

Modular verification relies heavily on loop invariants and function specifications. If arrays are
involved, quantifiers are often required, which makes verification conditions undecidable in general.
However, quantifiers could be supported in a limited, but decidable fragment called the array prop-
erty fragment [BMS06]. This would allow the developers to formulate specifications quantified over
elements of an array, such as sortedness.

Currently, we only target safety properties, but it would be practical to support liveness queries
as well (e.g. to detect vulnerabilities where an attacker can lock funds in a contract). One way we
envision this is to introduce special predicates for termination that could be used in the annotations.
For example, given a condition over inputs, a transaction has to succeed.

Our internal representation is currently based directly on the Boogie IVL. However, we believe
that it could be replacedwith a generic, SMT-based representation (e.g. extending the one that we used
for formalizing the memory model [c11]). Then this intermediate representation could be translated
to alternative verifier backends such asWhy3 [FP13] or Dafny [Lei10].

Boogie can report failing annotations, but it is not trivial to reproduce a counterexample, i.e. a
concrete trace that leads to the error. We can extract the raw model from the solver, but mapping
that back to the Boogie program (and then to the Solidity contract) is not straightforward and would
depend on the internal encoding of Boogie. The Corral [LQL12] tool has better support for coun-
terexamples (e.g. recording the values of variables), but it performs boundedmodel checking.We could
first use Boogie to check if there is an error, and if yes, use Corral to find the counterexample.

21https://solidity-summit.ethereum.org/
22https://fscd-ijcar-2020.org/workshops#SMT

108

https://solidity-summit.ethereum.org/
https://fscd-ijcar-2020.org/workshops#SMT

Summary of the Research Results

This dissertation addressed various challenges in applying formal verification in different application
domains. We presented extensions to the CEGAR-based reachability analysis of Petri Nets to lift its
expressive power and to increase the number of conclusive answers. We developed various novel
strategies for CEGAR-based software model checking to make it more efficient in terms of execution
time. We proposed a modular specification and verification approach for smart contracts that is ex-
pressive and efficient. This final chapter summarizes our work and highlights the contributions and
the key ideas.

Thesis 1: Extensions to the CEGAR Approach on Petri Nets

Petri nets are widely used for modeling concurrent and asynchronous systems. Many interesting
properties of the system can be reduced to reachability analysis, i.e. checking if a given marking is
reachable from the initial state of the net. While reachability is decidable, it is a complex problem that
can be addressed in different ways. The basis of our work is an algorithm that uses the state equation
of Petri nets as an over-approximation to reachability. The state equation is an efficient technique
(only depending on the structure of the net) but is only a necessary condition. Thus, in the case of
infeasible solutions, the algorithm makes the approximation more precise by extending the equation
with additional constraints in a CEGAR fashion. This thesis focused on the expressive power and the
conclusive answers of the algorithm.

We extended the algorithm to be able to handle reachability of predicates, an important general-
ization of reachability, where the target marking can be specified by a set of linear inequalities. This
was done by transforming the linear inequalities over the marking to constraints over transitions that
can be directly handled by the algorithm. We also proposed an extension to support Petri nets with
inhibitor arcs that can test the emptiness of places. Since these arcs do not appear in the state equa-
tion, we had to adapt the refinement step of the algorithm to be able to add extra constraints to the
equation corresponding to inhibitor arcs. Inhibitor arcs lift the expressive power of Petri nets to be
Turing complete, making reachability undecidable. Nevertheless, we presented examples where the
algorithm works.

From the side of conclusive answers, our prior work showed a whole subclass of nets where
the algorithm could not solve reachability. The reason for this was that the algorithm only tries to
involve invariants directly connected to a place that needs tokens. The key idea of our approachwas to
involve indirectly connected (“distant”) invariants transitively with a new iteration strategy. We also
experimented with breadth- and depth-first search strategies and proposed their combination as a

109

Summary of the Research Results

hybrid strategy. The basis of the hybrid search strategy is a partial order between the solutions based
on the transitions that could not fire: both minimal and maximal solutions are of interest. While
the algorithm can still give inconclusive answers with the extensions, we discussed its theoretical
limitations. My contributions in this thesis are summarized as follows.

Thesis 1 I proposed extensions and improvements to the CEGAR-based reachability analysis
of Petri nets, lifting its expressive power and increasing the amount of conclusive answers.
1.1 I generalized the algorithm to be able to solve reachability of predicates, where the target

state to be reached can be described with a set of linear constraints.
1.2 I extended the algorithm to be able to handle Petri nets with inhibitor arcs, raising its

expressive power.
1.3 I defined the concept of distant invariants and proposed a new iteration strategy, which

extended the kind of problems the algorithm could solve.
1.4 I defined a new ordering between partial solutions and a corresponding hybrid search

strategy that can speed up the convergence of the algorithm without losing solutions.

Publications related to this thesis are [j1], [j2], [c4], [c5] and [c7].

Thesis 2: Efficient Strategies for CEGAR-based Software Model Checking

Embedded software code written in lower level languages is often modeled using control-flow au-
tomata. Software model checking can prove interesting properties of programs by reducing the prob-
lem to checking the reachability of a distinguished error location. However, programs often have
many variables with rich domains, yielding a state space that cannot be managed explicitly. The basis
of our work is a generic, abstraction-based framework that incorporates explicit-value analysis and
predicate abstraction. The former only tracks a subset of the program variables while the latter keeps
track of facts and relationships using logical formulas. The set of tracked variables and predicates
is extended via abstraction refinement in a CEGAR fashion. This thesis focused on the efficiency of
CEGAR-based software model checking by proposing novel extensions and combinations of existing
strategies.

By default, explicit-value abstraction always calculates a single successor state: if an expression
cannot be deterministically evaluated, it is treated as unknown. We extended this domain by trying
to explicitly enumerate a predefined, configurable number of successor states in such cases. While this
has a minimal performance penalty, it can be compensated later by the increased precision. We also
adapted a search strategy that uses structural information about the program to guide the search in
the abstract state space towards counterexamples. The key idea was to use the syntactical distance to
the error location in the program as an under-approximating metric when processing states from the
queue. This is also beneficial for correct models, as intermediate steps of CEGAR do have counterex-
amples.

We improved abstraction refinement with a novel interpolation strategy based on processing the
spurious counterexample backwards from the erroneous state. This strategy can trace back the reason
of infeasibility to the earliest point in the abstract state space, yielding a faster convergence to the ap-
propriate precision. Furthermore, we proposed an approach that does not stop building abstraction at
the first counterexample, but rather collects all of them. Then, during refinement, all counterexamples
are checked, and a minimal subset is calculated for refinement. This can also yield a faster convergence
and more effective refinements. My contributions in this thesis are summarized as follows.

110

Summary of the Research Results

Thesis 2 I proposed various improvements and strategies to CEGAR-based software model
checking, increasing the efficiency of the algorithm.
2.1 I generalized explicit-value analysis to be able to enumerate a predefined, configurable

number of successor states, improving its precision, but avoiding state space explosion.
2.2 I adapted a search strategy to the context of CEGAR that estimates the distance from the

erroneous state in the abstract state space based on the structure of the software, efficiently
guiding exploration towards counterexamples.

2.3 I introduced an interpolation strategy based on backward reachability, that traces back
the reason of infeasibility to the earliest point in the program, yielding a faster refinement
convergence.

2.4 I described an approach for refinement based on multiple counterexamples, which al-
lows exchanging information between counterexamples and provides better quality re-
finements.

Publications related to this thesis are [j3], [c6], [c8], [c9], [e12] and [e13].

Thesis 3: Modular Specification and Verification of Smart Contracts

Solidity is a widely used language towrite smart contracts to be deployed on the Ethereum blockchain.
While there has been a great attention in using static analysis and theorem proving to verify contracts,
not much work has been done on automated verification of high-level, functional properties. Due
to the transactional behavior of the blockchain, modular specification and verification is a natural
way of describing and proving functional properties of smart contracts. Boogie is an intermediate
verification language (IVL) with features for modular specification and various verifier backends. This
thesis focused on proposing amodular verification and specification approach for smart contracts that
is expressive and efficient.

We adapted various existing specification constructs to smart contracts, including assertions, pre-
and postconditions, and invariants. These specifications are in-code annotations written in a subset
of Solidity. Furthermore, we also introduced domain specific properties (e.g. sum of collections) that
are not directly expressible in Solidity or in the verification logic. Such properties are crucial for many
applications in the blockchain domain (e.g. tokens, wallets).

We developed a translation from annotated Solidity contracts to the Boogie IVL in order to support
modular verification. The key idea of our approach was to model state variables as one dimensional
heaps and contract functions as Boogie procedures. While many elements of the translation were
straightforward, there were challenges related to blockchain specific constructs (e.g. transactional
behavior). One particularly interesting aspect of smart contracts is that they often involve compu-
tation over large bit-widths (up to 256 bits). We introduced a modular encoding of arithmetic based
on SMT integers that models the precise wraparound semantics with range assumptions and modulo
operations. This allowed scalable reasoning on variables up to large bit-widths even in the presence
of nonlinear arithmetic. My contributions in this thesis are summarized as follows.

Thesis 3 I defined a modular specification and verification approach for smart contracts by
annotating and translating them to an intermediate verification language.
3.1 I adapted existing modular specification constructs to the context of smart contracts.
3.2 I proposed domain-specific annotations for the modular specification and verification of

smart contracts.

111

Summary of the Research Results

3.3 I introduced a mapping from the Solidity contract-oriented programming language to the
Boogie intermediate verification language.

3.4 I described a modular arithmetic encoding that supports scalable bit-precise reasoning on
arithmetic operations.

Publications related to this thesis are [c10] and [c11].

112

Publications

Number of publications: 19
Number of peer-reviewed journal papers (written in English): 3
Number of articles in journals indexed by WoS or Scopus: 3
Number of publications (in English) with at least 50% contribution of the author: 8

Number of peer-reviewed publications: 18
Number of independent citations: 30

Publications Linked to the Theses

Journal International conference Local
papers and workshop papers events

Thesis 1 [j1] [j2] [c4] [c5] [c7] —
Thesis 2 [j3] [c6] [c8] [c9] [e12] [e13]
Thesis 3 — [c10] [c11] —

This classification follows the faculty’s Ph.D. publication score system.

Journal Papers

[j1] Ákos Hajdu, András Vörös, Tamás Bartha, and Zoltán Mártonka. Extensions to the CEGAR
approach on Petri nets. Acta Cybernetica 21(3), 2014, pp. 401–417. doi: 10.14232/actacyb.21.3.
2014.8.

[j2] András Vörös, Dániel Darvas, Ákos Hajdu, Attila Klenik, Kristóf Marussy, VinceMolnár, Tamás
Bartha, and István Majzik. Industrial applications of the PetriDotNet modelling and analysis
tool. Science of Computer Programming 157, 2018, pp. 17–40. doi: 10.1016/j.scico.2017.09.003.

[j3] Ákos Hajdu and Zoltán Micskei. Efficient strategies for CEGAR-based model checking. Journal
of Automated Reasoning Online first, 2019. doi: 10.1007/s10817-019-09535-x.

International Conference and Workshop Papers

[c4] Ákos Hajdu, András Vörös, Tamás Bartha, and Zoltán Mártonka. Extensions to the CEGAR
approach on Petri nets. In: Proceedings of the 13th Symposium on Programming Languages and
Software Tools, pp. 274–288. University of Szeged, 2013.

113

https://doi.org/10.14232/actacyb.21.3.2014.8
https://doi.org/10.14232/actacyb.21.3.2014.8
https://doi.org/10.1016/j.scico.2017.09.003
https://doi.org/10.1007/s10817-019-09535-x

Publications

[c5] Ákos Hajdu, András Vörös, and Tamás Bartha. New search strategies for the Petri net CEGAR
approach. In: Application and Theory of Petri Nets and Concurrency, Lecture Notes in Computer
Science, vol. 9115, pp. 309–328. Springer, 2015. doi: 10.1007/978-3-319-19488-2_16.

[c6] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A configurable CEGAR framework
with interpolation-based refinements. In: Formal Techniques for Distributed Objects, Components
and Systems, Lecture Notes in Computer Science, vol. 9688, pp. 158–174. Springer, 2016. doi:
10.1007/978-3-319-39570-8_11.

[c7] András Vörös, Dániel Darvas, Vince Molnár, Attila Klenik, Ákos Hajdu, Attila Jámbor, Tamás
Bartha, and István Majzik. PetriDotNet 1.5: extensible Petri net editor and analyser for educa-
tion and research. In: Application and Theory of Petri Nets and Concurrency, Lecture Notes in
Computer Science, vol. 9698, pp. 123–132. Springer, 2016. doi: 10.1007/978-3-319-39086-4_9.

[c8] Gyula Sallai, Ákos Hajdu, Tamás Tóth, and Zoltán Micskei. Towards evaluating size reduction
techniques for software model checking. In: Proceedings of the Fifth International Workshop on
Verification and Program Transformation, Electronic Proceedings in Theoretical Computer Sci-
ence, vol. 253, pp. 75–91. Open Publishing Association, 2017. doi: 10.4204/EPTCS.253.7.

[c9] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and IstvánMajzik. Theta: a framework
for abstraction refinement-based model checking. In: Proceedings of the 17th Conference on For-
mal Methods in Computer-Aided Design, pp. 176–179. 2017. doi: 10.23919/FMCAD.2017.8102257.

[c10] Ákos Hajdu and Dejan Jovanović. Solc-verify: a modular verifier for Solidity smart contracts.
In: Verified Software. Theories, Tools, and Experiments, Lecture Notes in Computer Science,
vol. 12301, pp. 161–179. Springer, 2020. doi: 10.1007/978-3-030-41600-3_11.

[c11] Ákos Hajdu andDejan Jovanović. SMT-friendly formalization of the Soliditymemorymodel. In:
Programming Languages and Systems, Lecture Notes in Computer Science, vol. 12075, pp. 224–
250. Springer, 2020. doi: 10.1007/978-3-030-44914-8_9.

Local Event Papers

[e12] Ákos Hajdu and Zoltán Micskei. Exploratory analysis of the performance of a configurable CE-
GAR framework. In: Proceedings of the 24th PhD Mini-Symposium, pp. 34–37. Budapest Uni-
versity of Technology and Economics, Department of Measurement and Information Systems,
2017. doi: 10.5281/zenodo.291895.

[e13] Ákos Hajdu and ZoltánMicskei. A preliminary analysis on the effect of randomness in a CEGAR
framework. In: Proceedings of the 25th PhD Mini-Symposium, pp. 32–35. Budapest University of
Technology and Economics, Department of Measurement and Information Systems, 2018. doi:
10.5281/zenodo.1219261.

Additional Publications (Not Linked to Theses)

International Conference and Workshop Papers

[c14] Ákos Hajdu, Róbert Német, Szilvia Varró-Gyapay, and András Vörös. Petri net based trajec-
tory optimization. In: ASCONIKK 2014: Extended Abstracts. Future Internet Services, pp. 11–19.
University of Pannonia, 2014.

114

https://doi.org/10.1007/978-3-319-19488-2_16
https://doi.org/10.1007/978-3-319-39570-8_11
https://doi.org/10.1007/978-3-319-39086-4_9
https://doi.org/10.4204/EPTCS.253.7
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-44914-8_9
https://doi.org/10.5281/zenodo.291895
https://doi.org/10.5281/zenodo.1219261

Publications

[c15] Bence Czipó, Ákos Hajdu, Tamás Tóth, and István Majzik. Exploiting hierarchy in the
abstraction-based verification of statecharts using SMT solvers. In: Proceedings of the 14th Inter-
national Workshop on Formal Engineering Approaches to Software Components and Architectures,
Electronic Proceedings in Theoretical Computer Science, vol. 245, pp. 31–45. Open Publishing
Association, 2017. doi: 10.4204/EPTCS.245.3.

[c16] Rebeka Farkas, Tamás Tóth, Ákos Hajdu, and András Vörös. Backward reachability analysis
for timed automata with data variables. In: Proceedings of the 18th International Workshop on
Automated Verification of Critical Systems, Electronic Communications of the EASST, vol. 76,
pp. 1–20. EASST, 2018. doi: 10.14279/tuj.eceasst.76.1076.

Local Event Papers

[e17] Rebeka Farkas and Ákos Hajdu. Activity-based abstraction refinement for timed systems. In:
Proceedings of the 24th PhD Mini-Symposium, pp. 18–21. Budapest University of Technology
and Economics, Department of Measurement and Information Systems, 2017. doi: 10 . 5281 /
zenodo.291891.

[e18] Viktória Dorina Bajkai and Ákos Hajdu. Software model checking with a combination of ex-
plicit values and predicates. In: Proceedings of the 26th PhD Mini-Symposium, pp. 4–7. Budapest
University of Technology and Economics, Department of Measurement and Information Sys-
tems, 2019. doi: 10.5281/zenodo.2597969.

Technical Reports

[r19] Ákos Hajdu. Making the TTreeReader interface more accessible. Tech. rep. CERN-STUDENTS-
Note-2015-039. European Organization for Nuclear Research (CERN), Aug. 2015.

Additional Work

[a20] Ákos Hajdu. Extensions to the CEGAR Approach on Petri Nets. Bachelor’s thesis. Budapest
University of Technology and Economics, 2013.

[a21] Ákos Hajdu. A Survey on CEGAR-based Model Checking. Master’s thesis. Budapest University
of Technology and Economics, 2015.

[a22] Ákos Hajdu and Zoltán Micskei. Supplementary Material for the paper "Efficient Strategies for
CEGAR-based Model Checking". 2018. doi: 10.5281/zenodo.1252784. (Dataset).

[a23] Ákos Hajdu, Dejan Jovanović, and Gabriela Ciocarlie. Formal Specification and Verification of
Solidity Contracts with Events. 2020. url: https://arxiv.org/abs/2005.10382. (Preprint).

115

https://doi.org/10.4204/EPTCS.245.3
https://doi.org/10.14279/tuj.eceasst.76.1076
https://doi.org/10.5281/zenodo.291891
https://doi.org/10.5281/zenodo.291891
https://doi.org/10.5281/zenodo.2597969
https://doi.org/10.5281/zenodo.1252784
https://arxiv.org/abs/2005.10382

Bibliography

[AB18] Tesnim Abdellatif and Kei-Leo Brousmiche. Formal verification of smart contracts based
on users and blockchain behaviors models. In: Proceedings of the 9th IFIP International
Conference on New Technologies, Mobility and Security, pp. 1–5. IEEE, 2018. doi: 10.1109/
NTMS.2018.8328737.

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on Ethereum
smart contracts. In: Principles of Security and Trust, Lecture Notes in Computer Science,
vol. 10204, pp. 164–186. Springer, 2017. doi: 10.1007/978-3-662-54455-6_8.

[AGC12] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Craig interpretation. In: Static
Analysis, Lecture Notes in Computer Science, vol. 7460, pp. 300–316. Springer, 2012. doi:
10.1007/978-3-642-33125-1_21.

[Alb+12] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. UFO: a framework for
abstraction- and interpolation-based software verification. In: Computer Aided Verifica-
tion, Lecture Notes in Computer Science, vol. 7358, pp. 672–678. Springer, 2012. doi:
10.1007/978-3-642-31424-7_48.

[Alb+14] Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, and Natasha
Sharygina. An extension of lazy abstraction with interpolation for programs with ar-
rays. Formal Methods in System Design 45(1), 2014, pp. 63–109. doi: 10.1007/s10703-014-
0209-9.

[Alb15] Aws Albarghouthi. Software Verification with Program-Graph Interpolation and Ab-
straction. PhD thesis. University of Toronto, 2015.

[Alu99] Rajeev Alur. Timed automata. In: Computer Aided Verification, Lecture Notes in Com-
puter Science, vol. 1633, pp. 8–22. Springer, 1999. doi: 10.1007/3-540-48683-6_3.

[Amp+16] Elvio Gilberto Amparore, Gianfranco Balbo, Marco Beccuti, Susanna Donatelli, and Giu-
liana Franceschinis. 30 years of GreatSPN. In: Principles of Performance and Reliabil-
ity Modeling and Evaluation, Springer Series in Reliability Engineering, pp. 227–254.
Springer, 2016. doi: 10.1007/978-3-319-30599-8_9.

[Amp+19] Elvio Amparore et al. Presentation of the 9th edition of the Model Checking Contest.
In: Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, vol. 11429, pp. 50–68. Springer, 2019. doi: 10.1007/978-3-030-17502-
3_4.

117

https://doi.org/10.1109/NTMS.2018.8328737
https://doi.org/10.1109/NTMS.2018.8328737
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-642-33125-1_21
https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/s10703-014-0209-9
https://doi.org/10.1007/s10703-014-0209-9
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-030-17502-3_4

Bibliography

[Ape+13] Sven Apel, Dirk Beyer, Karlheinz Friedberger, Franco Raimondi, and Alexander von
Rhein. Domain types: abstract-domain selection based on variable usage. In: Hardware
and Software: Verification and Testing, Lecture Notes in Computer Science, vol. 8244,
pp. 262–278. Springer, 2013. doi: 10.1007/978-3-319-03077-7_18.

[AR18] Leonardo Alt and Christian Reitwiessner. SMT-based verification of Solidity smart con-
tracts. In: Leveraging Applications of Formal Methods, Verification and Validation. Indus-
trial Practice, Lecture Notes in Computer Science, vol. 11247, pp. 376–388. Springer, 2018.
doi: 10.1007/978-3-030-03427-6_28.

[AW18] Andreas Antonopoulos and Gavin Wood. Mastering Ethereum: Building Smart Contracts
and Dapps. O’Reilly Media, 2018.

[Baj18] Viktória Dorina Bajkai. Combining Abstract Domains for Software Model Checking.
Bachelor’s Thesis. Budapest University of Technology and Economics, 2018.

[Bal04] Thomas Ball. Formalizing Counterexample-driven Refinement withWeakest Preconditions.
Tech. rep. MSR-TR-2004-134. Microsoft Research, 2004.

[Bar+04] Michael Barnett, Robert DeLine, Manuel Fähndrich, K Rustan M Leino, and Wolfram
Schulte. Verification of object-oriented programs with invariants. Journal of Object Tech-
nology 3(6), 2004, pp. 27–56.

[Bar+06] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino.
Boogie: a modular reusable verifier for object-oriented programs. In: Formal Methods
for Components and Objects, Lecture Notes in Computer Science, vol. 4111, pp. 364–387.
Springer, 2006. doi: 10.1007/11804192_17.

[Bar+11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In: Computer Aided Verification,
Lecture Notes in Computer Science, vol. 6806, pp. 171–177. Springer, 2011. doi: 10.1007/
978-3-642-22110-1_14.

[BDW15] Dirk Beyer, Matthias Dangl, and Philipp Wendler. Boosting k-induction with
continuously-refined invariants. In: Computer Aided Verification, Lecture Notes in
Computer Science, vol. 9206, pp. 622–640. Springer, 2015. doi: 10.1007/978-3-319-21690-
4_42.

[BDW18] Dirk Beyer, Matthias Dangl, and Philipp Wendler. A unifying view on SMT-based soft-
ware verification. Journal of Automated Reasoning 60(3), 2018, pp. 299–335. doi: 10.1007/
s10817-017-9432-6.

[Bei+20] Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea. Behav-
ioral simulation for smart contracts. In: Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 470–486. ACM, 2020. doi:
10.1145/3385412.3386022.

[Bey+07] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast. International Journal on Software Tools for Technology Transfer 9(5),
2007, pp. 505–525. doi: 10.1007/s10009-007-0044-z.

[Bey+09] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M Erkan Keremoglu, and Roberto Se-
bastiani. Software model checking via large-block encoding. In: Proceedings of the 2009
Conference on Formal Methods in Computer-Aided Design, pp. 25–32. IEEE, 2009. doi:
10.1109/FMCAD.2009.5351147.

118

https://doi.org/10.1007/978-3-319-03077-7_18
https://doi.org/10.1007/978-3-030-03427-6_28
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/3385412.3386022
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1109/FMCAD.2009.5351147

Bibliography

[Bey12] Dirk Beyer. Competition on software verification. In: Tools and Algorithms for the Con-
struction and Analysis of Systems, Lecture Notes in Computer Science, vol. 7214, pp. 504–
524. Springer, 2012. doi: 10.1007/978-3-642-28756-5_38.

[Bey15] Dirk Beyer. Software verification and verifiable witnesses. In: Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer Science, vol. 9035,
pp. 401–416. Springer, 2015. doi: 10.1007/978-3-662-46681-0_31.

[Bey16] Dirk Beyer. Reliable and reproducible competition results with BenchExec andwitnesses
(report on SV-COMP 2016). In: Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, vol. 9636, pp. 887–904. Springer, 2016. doi:
10.1007/978-3-662-49674-9_55.

[Bey17] Dirk Beyer. Software verification with validation of results. In: Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer Science, vol. 10206,
pp. 331–349. Springer, 2017. doi: 10.1007/978-3-662-54580-5_20.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.smt-lib.org. 2016.

[Bha+16] Karthikeyan Bhargavan et al. Formal verification of smart contracts: short paper. In:
ACM Workshop on Programming Languages and Analysis for Security, pp. 91–96. ACM,
2016. doi: 10.1145/2993600.2993611.

[BHM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability. IOS press,
2009.

[BHT07] Dirk Beyer, Thomas A Henzinger, and Grégory Théoduloz. Configurable software ver-
ification: concretizing the convergence of model checking and program analysis. In:
Computer Aided Verification, Lecture Notes in Computer Science, vol. 4590, pp. 504–518.
Springer, 2007. doi: 10.1007/978-3-540-73368-3_51.

[BHT08] Dirk Beyer, Thomas A Henzinger, and Grégory Théoduloz. Program analysis with dy-
namic precision adjustment. In: Proceedings of the 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 29–38. IEEE, 2008. doi: 10.1109/ASE.2008.13.

[Bie+99] Armin Biere, Alessandro Cimatti, Edmund M Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In: Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, vol. 1579, pp. 193–207. Springer, 1999. doi:
10.1007/3-540-49059-0_14.

[Bie07] Armin Biere. The AIGER And-Inverter Graph (AIG) Format Version 20071012. Tech. rep.
Report 07/1. Institute for Formal Models and Verification, Johannes Kepler University,
2007.

[BK11] Dirk Beyer and M Erkan Keremoglu. CPAchecker: a tool for configurable software veri-
fication. In: Computer Aided Verification, Lecture Notes in Computer Science, vol. 6806,
pp. 184–190. Springer, 2011. doi: 10.1007/978-3-642-22110-1_16.

[BKW10] Dirk Beyer, M Erkan Keremoglu, and Philipp Wendler. Predicate abstraction with
adjustable-block encoding. In: Proceedings of the 2010 Conference on Formal Methods in
Computer-Aided Design, pp. 189–198. FMCAD Inc., 2010.

[BL05] Mike Barnett and K Rustan M Leino. Weakest-precondition of unstructured programs.
In: Proceedings of the 6th ACM SIGPLAN-SIGSOFTWorkshop on ProgramAnalysis for Soft-
ware Tools and Engineering, pp. 82–87. ACM, 2005. doi: 10.1145/1108792.1108813.

119

https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/1108792.1108813

Bibliography

[BL13] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In: Fundamental Approaches to Software Engineering, Lecture Notes in
Computer Science, vol. 7793, pp. 146–162. Springer, 2013. doi: 10.1007/978-3-642-37057-
1_11.

[Bla+10] Régis Blanc, Thomas A Henzinger, Thibaud Hottelier, and Laura Kovács. ABC: algebraic
bound computation for loops. In: Logic for Programming, Artificial Intelligence, and Rea-
soning, Lecture Notes in Computer Science, vol. 6355, pp. 103–118. Springer, 2010. doi:
10.1007/978-3-642-17511-4_7.

[BLS05] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The Spec# programming sys-
tem: an overview. In: Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, Lecture Notes in Computer Science, vol. 3362, pp. 49–69. Springer, 2005. doi:
10.1007/978-3-540-30569-9_3.

[BLW15a] Dirk Beyer, Stefan Löwe, and PhilippWendler. Refinement selection. In:Model Checking
Software, Lecture Notes in Computer Science, vol. 9232, pp. 20–38. Springer, 2015. doi:
10.1007/978-3-319-23404-5_3.

[BLW15b] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Sliced path prefixes: an effective method
to enable refinement selection. In: Formal Techniques for Distributed Objects, Components,
and Systems, Lecture Notes in Computer Science, vol. 9039, pp. 228–243. Springer, 2015.
doi: 10.1007/978-3-319-19195-9_15.

[BLW19] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: requirements
and solutions. International Journal on Software Tools for Technology Transfer 21(1), 2019,
pp. 1–29. doi: 10.1007/s10009-017-0469-y.

[BM07] Aaron R Bradley and Zohar Manna. The calculus of computation: Decision procedures with
applications to verification. Springer, 2007.

[BMS06] Aaron R Bradley, Zohar Manna, and Henny B Sipma. What’s decidable about arrays?
In: Verification, Model Checking, and Abstract Interpretation, Lecture Notes in Computer
Science, vol. 3855, pp. 427–442. Springer, 2006. doi: 10.1007/11609773_28.

[Bøn+18] Frederik Bønneland, Jakob Dyhr, Peter G Jensen, Mads Johannsen, and Jiří Srba. Simpli-
fication of CTL formulae for efficient model checking of Petri nets. In: Application and
Theory of Petri Nets and Concurrency, Lecture Notes in Computer Science, vol. 10877,
pp. 143–163. Springer, 2018. doi: 10.1007/978-3-319-91268-4_8.

[Bor00] Richard Bornat. Proving pointer programs in Hoare logic. In: Mathematics of Program
Construction, Lecture Notes in Computer Science, vol. 1837, pp. 102–126. 2000. doi: 10.
1007/10722010_8.

[Bou93] François Bourdoncle. Efficient chaotic iteration strategies with widenings. In: Formal
Methods in Programming and Their Applications, Lecture Notes in Computer Science,
vol. 735, pp. 128–141. Springer, 1993. doi: 10.1007/BFb0039704.

[BPR01] Thomas Ball, Andreas Podelski, and Sriram Rajamani. Boolean and Cartesian abstrac-
tion for model checking C programs. In: Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science, vol. 2031, pp. 268–283. Springer,
2001. doi: 10.1007/3-540-45319-9_19.

120

https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-17511-4_7
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-319-19195-9_15
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/10722010_8
https://doi.org/10.1007/10722010_8
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/3-540-45319-9_19

Bibliography

[BR01] Thomas Ball and Sriram Rajamani. The Slam toolkit. In: Computer Aided Verification,
Lecture Notes in Computer Science, vol. 2102, pp. 260–264. Springer, 2001. doi: 10.1007/
3-540-44585-4_25.

[BR02] Thomas Ball and Sriram Rajamani. Generating Abstract Explanations of Spurious Coun-
terexamples in C Programs. Tech. rep. MSR-TR-2002-09. Microsoft Research, 2002.

[Bra11] Aaron R Bradley. SAT-based model checking without unrolling. In: Verification, Model
Checking, and Abstract Interpretation, Lecture Notes in Computer Science, vol. 6538,
pp. 70–87. Springer, 2011. doi: 10.1007/978-3-642-18275-4_7.

[Brü+07] Ingo Brückner, Klaus Dräger, Bernd Finkbeiner, and Heike Wehrheim. Slicing abstrac-
tions. In: International Symposium on Fundamentals of Software Engineering, Lecture
Notes in Computer Science, vol. 4767, pp. 17–32. Springer, 2007. doi: 10.1007/978- 3-
540-75698-9_2.

[Bry86] Randal E Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 100(8), 1986, pp. 677–691. doi: 10.1109/TC.1986.1676819.

[BS08] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In: Pro-
ceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 443–446. IEEE, 2008. doi: 10.1109/ASE.2008.69.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, 2018. doi: 10.1007/978-3-319-10575-8_11.

[Bur+90] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn
Hwang. Symbolic model checking: 1020 states and beyond. In: Proceedings of the 5th An-
nual IEEE Symposium on Logic in Computer Science, pp. 428–439. 1990. doi: 10.1109/LICS.
1990.113767.

[Bus02] Nadia Busi. Analysis issues in Petri nets with inhibitor arcs. Theoretical Computer Science
275(1-2), 2002, pp. 127–177. doi: 10.1016/S0304-3975(01)00127-X.

[BW12] Dirk Beyer and Philipp Wendler. Algorithms for software model checking: Predicate
abstraction vs. Impact. In: Proceedings of the 2012 Conference on Formal Methods in
Computer-Aided Design, pp. 106–113. IEEE, 2012.

[Cab+16] Gianpiero Cabodi, Carmelo Loiacono, Marco Palena, Paolo Pasini, Denis Patti, Ste-
fano Quer, Danilo Vendraminetto, Armin Biere, Keijo Heljanko, and Jason Baumgart-
ner. Hardware model checking competition 2014: an analysis and comparison of solvers
and benchmarks. Journal on Satisfiability, Boolean Modeling and Computation 9, 2016,
pp. 135–172.

[Cal+15] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer,
Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Ro-
driguez. Moving fast with software verification. In:NASA Formal Methods, Lecture Notes
in Computer Science, vol. 9058, pp. 3–11. Springer, 2015. doi: 10.1007/978-3-319-17524-
9_1.

[Cav+07] Roberto Cavada, Alessandro Cimatti, Anders Franzén, Krishnamani Kalyanasundaram,
Marco Roveri, and R K Shyamasundar. Computing predicate abstractions by integrat-
ing BDDs and SMT solvers. In: Proceedings of the 2007 Conference on Formal Methods in
Computer-Aided Design, pp. 69–76. IEEE, 2007. doi: 10.1109/FMCAD.2007.18.

121

https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-540-75698-9_2
https://doi.org/10.1007/978-3-540-75698-9_2
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1016/S0304-3975(01)00127-X
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1109/FMCAD.2007.18

Bibliography

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pp. 238–252. 1977. doi: 10.1145/512950.512973.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In: Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, pp. 209–224.
USENIX Association, 2008.

[CE82] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In: Logics of Programs, Lecture Notes in Com-
puter Science, vol. 131, pp. 52–71. Springer, 1982. doi: 10.1007/BFb0025774.

[CGL94] Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems 16(5), 1994, pp. 1512–1542.
doi: 10.1145/186025.186051.

[CGP99] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press, 1999.
[CGS04] Edmund M Clarke, Anubhav Gupta, and Ofer Strichman. SAT-based counterexample-

guided abstraction refinement. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 23(7), 2004, pp. 1113–1123. doi: 10.1109/TCAD.2004.829807.

[Che+20] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. Defining smart
contract defects on Ethereum. IEEE Transactions on Software Engineering, 2020. (Early
access).

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: an interpolating
SMT solver. In: Model Checking Software, Lecture Notes in Computer Science, vol. 7385,
pp. 248–254. Springer, 2012. doi: 10.1007/978-3-642-31759-0_19.

[Cho+20] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R Monteiro,
Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig, and Mark R Tuttle.
Code level model-checking in the software development workflow. In: Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), 2020. (In press).

[Chr99] Piotr Chrząstowski-Wachtel. Testing undecidability of the reachability in Petri nets with
the help of 10th Hilbert problem. In: Application and Theory of Petri Nets 1999, Lecture
Notes in Computer Science, vol. 1639, pp. 268–281. Springer, 1999. doi: 10.1007/3-540-
48745-X_16.

[Chu36] Alonzo Church. A note on the Entscheidungsproblem. The Journal of Symbolic Logic 1(1),
1936, pp. 40–41.

[Cim+13] Alessandro Cimatti, Alberto Griggio, BastiaanJoost Schaafsma, and Roberto Sebastiani.
The MathSAT5 SMT solver. In: Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, vol. 7795, pp. 93–107. Springer, 2013. doi:
10.1007/978-3-642-36742-7_7.

[Cla+03] Edmund M Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal
of the ACM 50(5), 2003, pp. 752–794. doi: 10.1145/876638.876643.

122

https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/186025.186051
https://doi.org/10.1109/TCAD.2004.829807
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/3-540-48745-X_16
https://doi.org/10.1007/3-540-48745-X_16
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1145/876638.876643

Bibliography

[Cla+05] Edmund M Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SatAbs: SAT-
based predicate abstraction for ANSI-C. In: Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science, vol. 3440, pp. 570–574. Springer,
2005. doi: 10.1007/978-3-540-31980-1_40.

[Cla+18] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick P Bloem. Hand-
book of model checking. Springer, 2018. doi: 10.1007/978-3-319-10575-8.

[CLS01] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: an efficient iter-
ation strategy for symbolic state-space generation. In: Tools and Algorithms for the Con-
struction and Analysis of Systems, Lecture Notes in Computer Science, vol. 2031, pp. 328–
342. Springer, 2001. doi: 10.1007/3-540-45319-9_23.

[CNQ11] Gianpiero Cabodi, Sergio Nocco, and Stefano Quer. Interpolation sequences revisited.
In: 2011 Design, Automation and Test in Europe, pp. 1–6. IEEE, 2011. doi: 10.1109/DATE.
2011.5763056.

[Con18] ConsenSys. Ethereum Smart Contract Security Best Practices. 2018. url: https://consensys.
github.io/smart-contract-best-practices/.

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM, 1971.

[Cor17] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. 2017. url: https://www.R-project.org/.

[Cra57] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(03), 1957, pp. 269–285.

[CT05] Jean-Michel Couvreur and Yann Thierry-Mieg. Hierarchical decision diagrams to ex-
ploit model structure. In: Formal Techniques for Networked and Distributed Systems, Lec-
ture Notes in Computer Science, vol. 3731, pp. 443–457. Springer, 2005. doi: 10.1007/
11562436_32.

[CT93] Gianfranco Ciardo and Kishor S Trivedi. A decomposition approach for stochastic re-
ward net models. Performance Evaluation 18(1), 1993, pp. 37–59. doi: 10 . 1016 / 0166 -
5316(93)90026-Q .

[CU05] Sinan Cayir and Mürvet Ucer. An algorithm to compute a basis of Petri net invariants.
In: Proceedings of the 4th ELECO International Conference on Electrical and Electronics
Engineering, UCTEA, 2005.

[Cyt+91] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems 13(4), 1991, pp. 451–490. doi:
10.1145/115372.115320.

[Cze+17] Mike Czech, EykeHüllermeier, Marie-Christine Jakobs, andHeikeWehrheim. Predicting
rankings of software verification tools. In: Proceedings of the 3rd ACM SIGSOFT Interna-
tional Workshop on Software Analytics, pp. 23–26. ACM, 2017. doi: 10 . 1145 / 3121257 .
3121262.

[Cze+19] Wojciech Czerwiundefinedski, Sławomir Lasota, Ranko Laziundefined, Jérôme Leroux,
and Filip Mazowiecki. The reachability problem for Petri nets is not elementary. In: Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 24–33.
ACM, 2019. doi: 10.1145/3313276.3316369.

123

https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1109/DATE.2011.5763056
https://doi.org/10.1109/DATE.2011.5763056
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://www.R-project.org/
https://doi.org/10.1007/11562436_32
https://doi.org/10.1007/11562436_32
https://doi.org/10.1016/0166-5316(93)90026-Q
https://doi.org/10.1016/0166-5316(93)90026-Q
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3313276.3316369

Bibliography

[Czi16] Bence Czipó. Hierarchical Abstraction for the Verification of State-based Systems. Bach-
elor’s Thesis. Budapest University of Technology and Economics, 2016.

[CZJ12] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. Ten years of saturation: a Petri net
perspective. In: Transactions on Petri Nets and OtherModels of Concurrency, Lecture Notes
in Computer Science, vol. 2031, pp. 51–95. Springer, 2012. doi: 10.1007/978-3-642-29072-
5_3.

[Dar+18] Priyanka Darke, Sumanth Prabhu, Bharti Chimdyalwar, Avriti Chauhan, Shrawan Ku-
mar, Animesh Basakchowdhury, R Venkatesh, Advaita Datar, and Raveendra Kumar
Medicherla. VeriAbs: verification by abstraction and test generation. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science,
vol. 10806, pp. 457–462. Springer, 2018. doi: 10.1007/978-3-319-89963-3_32.

[Dar14] Dániel Darvas. Incremental extension of the saturation algorithm-based bounded model
checking of Petri nets. Master’s Thesis. Budapest University of Technology and Eco-
nomics, 2014.

[Dat18] NIST National Vulnerability Database. CVE-2018-10299: Beauty Ecosystem Coin (BEC)
“batchOverflow” issue. 2018. url: https://nvd.nist.gov/vuln/detail/CVE-2018-10299.

[DB09] Leonardo De Moura and Nikolaj Bjørner. Generalized, efficient array decision proce-
dures. In: Proceedings of the 2009 Conference on Formal Methods in Computer-Aided De-
sign, pp. 45–52. 2009. doi: 10.1109/FMCAD.2009.5351142.

[DBM19] Dániel Darvas, Enrique Blanco Viñuela, and Vince Molnár. PLCverif re-engineered: An
open platform for the formal analysis of PLC programs. In: Proceedings of the 17th In-
ternational Conference on Accelerator and Large Experimental Physics Control Systems,
JACoW, 2019.

[Dem+17] Yulia Demyanova, Thomas Pani, Helmut Veith, and Florian Zuleger. Empirical software
metrics for benchmarking of verification tools. Formal Methods in System Design 50(2),
2017, pp. 289–316. doi: 10.1007/s10703-016-0264-5.

[DFB15] Dániel Darvas, Borja Fernández Adiego, and Enrique Blanco Viñuela. PLCverif: A tool
to verify PLC programs based on model checking techniques. In: Proceedings of the 15th
International Conference on Accelerator and Large Experimental Physics Control Systems,
pp. 911–914. JACoW, 2015. doi: 10.18429/JACoW-ICALEPCS2015-WEPGF092.

[Die+17] Daniel Dietsch, Matthias Heizmann, Betim Musa, Alexander Nutz, and Andreas Podel-
ski. Craig vs. Newton in software model checking. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pp. 487–497. ACM, 2017. doi: 10.1145/
3106237.3106307.

[Dij71] Edsger Wybe Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica
1(2), 1971, pp. 115–138. doi: 10.1007/BF00289519.

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated tech-

niques for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(7), 2008, pp. 1165–1178. doi: 10 .1109 /TCAD.2008 .
923410.

[DL05] Robert DeLine and K RustanM Leino. BoogiePL: A typed procedural language for checking
object-oriented programs. Tech. rep. MSR-TR-2005-70. Microsoft Research, 2005.

124

https://doi.org/10.1007/978-3-642-29072-5_3
https://doi.org/10.1007/978-3-642-29072-5_3
https://doi.org/10.1007/978-3-319-89963-3_32
https://nvd.nist.gov/vuln/detail/CVE-2018-10299
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/s10703-016-0264-5
https://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
https://doi.org/10.1145/3106237.3106307
https://doi.org/10.1145/3106237.3106307
https://doi.org/10.1007/BF00289519
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410

Bibliography

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM 5(7), 1962, pp. 394–397.

[DM06] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In:
Computer Aided Verification, Lecture Notes in Computer Science, vol. 4144, pp. 81–94.
Springer, 2006. doi: 10.1007/11817963_11.

[DMH17] Vikram Dhillon, David Metcalf, and Max Hooper. The DAO hacked. In: Blockchain En-
abled Applications, pp. 67–78. Springer, 2017. doi: 10.1007/978-1-4842-3081-7_6.

[Dob19] Mihály Dobos-Kovács. Combining testing and formal verification in automotive soft-
ware development. Bachelor’s thesis. Budapest University of Technology and Eco-
nomics, 2019.

[Dou17] Jules Dourlens. SafeMath to protect from overflows. 2017. url: https://ethereumdev.io/
safemath-protect-overflows/.

[DRZ17] Yulia Demyanova, Philipp Rümmer, and Florian Zuleger. Systematic predicate abstrac-
tion using variable roles. In: NASA Formal Methods, Lecture Notes in Computer Science,
vol. 10227, pp. 265–281. Springer, 2017. doi: 10.1007/978-3-319-57288-8_18.

[Dut14] Bruno Dutertre. Yices 2.2. In: Computer Aided Verification, Lecture Notes in Computer
Science, vol. 8559, pp. 737–744. Springer, 2014. doi: 10.1007/978-3-319-08867-9_49.

[EM00] Javier Esparza and Stephan Melzer. Verification of safety properties using integer pro-
gramming: beyond the state equation. Formal Methods in System Design 16(2), 2000,
pp. 159–189. doi: 10.1023/A:1008743212620.

[EN94] Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets. J. Inform. Process.
Cybernet. EIK 30(3), 1994, pp. 143–160.

[Eth18] Ethereum. Solidity Documentation. 2018. url: https://solidity.readthedocs.io/en/v0.4.25/.
[Far16] Rebeka Farkas. Verification of Timed Automata by CEGAR-Based Algorithms. Master’s

thesis. Budapest University of Technology and Economics, 2016.
[FB18] Rebeka Farkas and Gábor Bergmann. Towards reliable benchmarks of timed automata.

In: Proceedings of the 25th PhDMini-Symposium, pp. 20–23. Budapest University of Tech-
nology and Economics, Department of Measurement and Information Systems, 2018.

[Fea91] Paul Feautrier. Dataflow analysis of array and scalar references. International Journal of
Parallel Programming 20(1), 1991, pp. 23–53. doi: 10.1007/BF01407931.

[Fer+15] Borja Fernández Adiego, Dániel Darvas, Enrique Blanco Viñuela, Jean-Charles Tournier,
Simon Bliudze, Jan Olaf Blech, and Víctor M González Suárez. Applying model checking
to industrial-sized PLC programs. IEEE Transactions on Industrial Informatics 11(6), 2015,
pp. 1400–1410. doi: 10.1109/TII.2015.2489184.

[FGG19] Josselin Feist, Gustavo Greico, and Alex Groce. Slither: a static analysis framework for
smart contracts. In: Proceedings of the 2nd International Workshop on Emerging Trends in
Software Engineering for Blockchain, pp. 8–15. IEEE, 2019. doi: 10.1109/WETSEB.2019.
00008.

[Fla+02] Cormac Flanagan, K Rustan M Leino, Mark Lillibridge, Greg Nelson, James B Saxe, and
Raymie Stata. Extended static checking for Java. In: Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation, pp. 234–245.
ACM, 2002. doi: 10.1145/512529.512558.

125

https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-1-4842-3081-7_6
https://ethereumdev.io/safemath-protect-overflows/
https://ethereumdev.io/safemath-protect-overflows/
https://doi.org/10.1007/978-3-319-57288-8_18
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1023/A:1008743212620
https://solidity.readthedocs.io/en/v0.4.25/
https://doi.org/10.1007/BF01407931
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/512529.512558

Bibliography

[Flo67] RobertW Floyd. Assigning meanings to programs. In: Proceedings of Symposia in Applied
Mathematics Vol. 19, pp. 19–32. 1967.

[FM10] Carlo Alberto Furia and Bertrand Meyer. Inferring loop invariants using postcondi-
tions. In: Fields of Logic and Computation, Lecture Notes in Computer Science, vol. 6300,
pp. 277–300. Springer, 2010. doi: 10.1007/978-3-642-15025-8_15.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers.
In: Programming Languages and Systems, Lecture Notes in Computer Science, vol. 7792,
pp. 125–128. Springer, 2013. doi: 10.1007/978-3-642-37036-6_8.

[GD19] Mitchell J Gerrard and Matthew B Dwyer. ALPACA: a large portfolio-based alternating
conditional analysis. In: Proceedings of the 41st International Conference on Software En-
gineering: Companion Proceedings, pp. 35–38. IEEE, 2019. doi: 10.1109/ICSE-Companion.
2019.00032.

[GMS18] Ilya Grishchenko,MatteoMaffei, and Clara Schneidewind. A semantic framework for the
security analysis of Ethereum smart contracts. In: Principles of Security and Trust, Lecture
Notes in Computer Science, vol. 10804, pp. 243–269. Springer, 2018. doi: 10.1007/978-3-
319-89722-6_10.

[God91] Patrice Godefroid. Using partial orders to improve automatic verification methods. In:
Computer-Aided Verification, Lecture Notes in Computer Science, vol. 531, pp. 176–185.
Springer, 1991. doi: 10.1007/BFb0023731.

[GS97] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In:
Computer Aided Verification, Lecture Notes in Computer Science, vol. 1254, pp. 72–83.
Springer, 1997. doi: 10.1007/3-540-63166-6_10.

[Gul+08] Bhargav S Gulavani, Supratik Chakraborty, Aditya V Nori, and Sriram K Rajamani. Au-
tomatically refining abstract interpretations. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems, Lecture Notes in Computer Science, vol. 4963, pp. 443–458.
Springer, 2008. doi: 10.1007/978-3-540-78800-3_33.

[Gur+15] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. The Sea-
Horn verification framework. In: Computer Aided Verification, Lecture Notes in Com-
puter Science, vol. 9206, pp. 343–361. Springer, 2015. doi: 10.1007/978- 3- 319- 21690-
4_20.

[Hen+02] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy abstrac-
tion. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 58–70. 2002. doi: 10.1145/3236950.3236969.

[Hen+04] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L McMillan. Abstrac-
tions from proofs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 232–244. 2004. doi: 10.1145/982962.964021.

[Hil+18] Everett Hildenbrandt et al. KEVM: a complete formal semantics of the Ethereum vir-
tual machine. In: Proceedings of the IEEE 31st Computer Security Foundations Symposium,
pp. 204–217. IEEE, 2018. doi: 10.1109/CSF.2018.00022.

[Hir17] Yoichi Hirai. Defining the Ethereum virtual machine for interactive theorem provers.
In: Financial Cryptography and Data Security, Lecture Notes in Computer Science,
vol. 10323, pp. 520–535. Springer, 2017. doi: 10.1007/978-3-319-70278-0_33.

126

https://doi.org/10.1007/978-3-642-15025-8_15
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1109/ICSE-Companion.2019.00032
https://doi.org/10.1109/ICSE-Companion.2019.00032
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-540-78800-3_33
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1145/3236950.3236969
https://doi.org/10.1145/982962.964021
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1007/978-3-319-70278-0_33

Bibliography

[HK18] Dominik Harz and William Knottenbelt. Towards Safer Smart Contracts: A Survey of
Languages and Verification Methods. 2018. url: http://arxiv.org/abs/1809.09805.

[HNR68] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics
4(2), 1968, pp. 100–107. doi: 10.1109/TSSC.1968.300136.

[Hoa69] Charles A R Hoare. An axiomatic basis for computer programming. Communications of
the ACM 12(10), 1969, pp. 576–580. doi: 10.1145/363235.363259.

[HUW14] John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem proving.
In: Computational Logic, vol. 9, pp. 135–214. 2014.

[Jär+12] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The international
SAT solver competitions. AI Magazine 33(1), 2012, pp. 89–92. doi: 10.1609/aimag.v33i1.
2395.

[JD16] Dejan Jovanović and Bruno Dutertre. Property-directed k-induction. In: Proceedings of
the 2016 Conference on Formal Methods in Computer-Aided Design, pp. 85–92. IEEE, 2016.
doi: 10.1109/FMCAD.2016.7886665.

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Computing Surveys
41(4), 2009, pp. 1–54. doi: 10.1145/1592434.1592438.

[Joh+13] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Parameterized
model checking of fault-tolerant distributed algorithms by abstraction. In: Proceedings
of the 2013 Conference on Formal Methods in Computer-Aided Design, pp. 201–209. IEEE,
2013. doi: 10.1109/FMCAD.2013.6679411.

[Jov17] Dejan Jovanović. Solving nonlinear integer arithmetic with MCSAT. In: Verification,
Model Checking, and Abstract Interpretation, Lecture Notes in Computer Science,
vol. 10145, pp. 330–346. Springer, 2017. doi: 10.1007/978-3-319-52234-0_18.

[Kal+18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: analyzing safety of
smart contracts. In: Network and Distributed Systems Security Symposium, 2018.

[Kan+15] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van
Dijk. LTSmin: high-performance language-independent model checking. In: Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Sci-
ence, vol. 9035, pp. 692–707. Springer, 2015. doi: 10.1007/978-3-662-46681-0_61.

[Kor+12] Fabrice Kordon, Alban Linard, Didier Buchs, Maximilien Colange, Sami Evangelista, Kai
Lampka, Niels Lohmann, Emmanuel Paviot-Adet, Yann Thierry-Mieg, and Harro Wim-
mel. Report on the model checking contest at Petri nets 2011. In: Transactions on Petri
Nets and Other Models of Concurrency VI, Lecture Notes in Computer Science, vol. 7400,
pp. 169–196. Springer, 2012. doi: 10.1007/978-3-642-35179-2_8.

[Kor+19] Fabrice Kordon, Michael Leuschel, Jaco van de Pol, and Yann Thierry-Mieg. Software
architecture of modern model checkers. In: Computing and Software Science: State of
the Art and Perspectives, Lecture Notes in Computer Science, vol. 10000, pp. 393–419.
Springer, 2019. doi: 10.1007/978-3-319-91908-9_20.

[Kos82] S Rao Kosaraju. Decidability of reachability in vector addition systems. In: Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 267–281. ACM,
1982. doi: 10.1145/800070.802201.

127

http://arxiv.org/abs/1809.09805
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1145/363235.363259
https://doi.org/10.1609/aimag.v33i1.2395
https://doi.org/10.1609/aimag.v33i1.2395
https://doi.org/10.1109/FMCAD.2016.7886665
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1109/FMCAD.2013.6679411
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/978-3-319-91908-9_20
https://doi.org/10.1145/800070.802201

Bibliography

[KS16] Daniel Kroening and Ofer Strichman.Decision Procedures, Second Edition. Springer, 2016.
doi: 10.1007/978-3-662-50497-0.

[KW11] Daniel Kroening and Georg Weissenbacher. Interpolation-based software verification
with Wolverine. In: Computer Aided Verification, Lecture Notes in Computer Science,
vol. 6806, pp. 573–578. Springer, 2011. doi: 10.1007/978-3-642-22110-1_45.

[Lei08] K Rustan M Leino. This is Boogie 2. 2008.
[Lei10] K Rustan M Leino. Dafny: an automatic program verifier for functional correctness. In:

Logic for Programming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer
Science, vol. 11247, pp. 348–370. Springer, 2010. doi: 10.1007/978-3-642-17511-4_20.

[Ler11] Jérôme Leroux. Vector addition system reachability problem: a short self-contained
proof. SIGPLAN Notices 46(1), 2011, pp. 307–316. doi: 10.1145/1925844.1926421.

[Lip76] Richard J Lipton. The Reachability Problem Requires Exponential Space. Tech. rep. Yale
University, Dept. of Computer Science, 1976.

[LM05] K RustanM Leino and Peter Müller. Modular verification of static class invariants. In: FM
2005: Formal Methods, Lecture Notes in Computer Science, vol. 3582, pp. 26–42. Springer,
2005. doi: 10.1007/11526841_4.

[LMN15] Martin Leucker, Grigory Markin, and Martin R Neuhäußer. A new refinement strategy
for CEGAR-based industrial model checking. In:Hardware and Software: Verification and
Testing, Lecture Notes in Computer Science, vol. 9434, pp. 155–170. Springer, 2015. doi:
10.1007/978-3-319-26287-1_10.

[Lou+15] Cláudio Belo Lourenço, Si-Mohamed Lamraoui, Shin Nakajima, and Jorge Sousa Pinto.
Studying verification conditions for imperative programs. In: Proceedings of the 15th In-
ternational Workshop on Automated Verification of Critical Systems, Electronic Commu-
nications of the EASST, vol. 72, pp. 1–15. EASST, 2015. doi: 10.14279/tuj.eceasst.72.1011.

[Löw17] Stefan Löwe. Effective Approaches to Abstraction Refinement for Automatic Software
Verification. PhD thesis. University of Passau, 2017.

[LPY97] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Jour-
nal on Software Tools for Technology Transfer 1(1-2), 1997, pp. 134–152. doi: 10 .1007 /
s100090050010.

[LQL12] Akash Lal, Shaz Qadeer, and Shuvendu K Lahiri. A solver for reachability modulo the-
ories. In: Computer Aided Verification, Lecture Notes in Computer Science, vol. 7358,
pp. 427–443. Springer, 2012. doi: 10.1007/978-3-642-31424-7_32.

[LS15] Jerome Leroux and Sylvain Schmitz. Demystifying reachability in vector addition sys-
tems. In: Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, pp. 56–67. IEEE, 2015. doi: 10.1109/LICS.2015.16.

[LS19] Jerome Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: Proceedings of the 34th Annual ACM/IEEE Symposium
on Logic in Computer Science, pp. 1–13. IEEE, 2019. doi: 10.1109/LICS.2019.8785796.

[LSS99] K RustanM Leino, James B Saxe, and Raymie Stata. Checking Java programs via guarded
commands. In: Proceedings of the Workshop on Object-Oriented Technology, pp. 110–111.
Springer, 1999.

128

https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-642-22110-1_45
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1925844.1926421
https://doi.org/10.1007/11526841_4
https://doi.org/10.1007/978-3-319-26287-1_10
https://doi.org/10.14279/tuj.eceasst.72.1011
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-31424-7_32
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2019.8785796

Bibliography

[Luu+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making
smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 254–269. ACM, 2016. doi: 10.1145/2976749.2978309.

[May81] Ernst W Mayr. An algorithm for the general Petri net reachability problem. In: Proceed-
ings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 238–246.
ACM, 1981. doi: 10.1145/800076.802477.

[MB08] Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer, 2008. doi: 10.1007/978-3-540-78800-3_24.

[McC62] John McCarthy. Towards a mathematical science of computation. In: IFIP Congress,
pp. 21–28. 1962.

[MCJ18] Andrew Miller, Zhicheng Cai, and Somesh Jha. Smart contracts and opportunities for
formal methods. In: Leveraging Applications of Formal Methods, Verification and Vali-
dation. Industrial Practice, Lecture Notes in Computer Science, vol. 11247, pp. 280–299.
Springer, 2018. doi: 10.1007/978-3-030-03427-6_22.

[McM05] Kenneth L McMillan. Applications of Craig interpolants in model checking. In: Tools
and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, vol. 3440, pp. 1–12. Springer, 2005. doi: 10.1007/978-3-540-31980-1_1.

[McM06] Kenneth LMcMillan. Lazy abstraction with interpolants. In:Computer Aided Verification,
Lecture Notes in Computer Science, vol. 4144, pp. 123–136. Springer, 2006. doi: 10.1007/
11817963_14.

[Mey19] Bertrand Meyer. Soundness and completeness: with precision. 2019. url: https : / /
bertrandmeyer.com/2019/04/21/soundness-completeness-precision/.

[ML18] AnastasiaMavridou andÁron Laszka. Tool demonstration: FSolidM for designing secure
Ethereum smart contracts. In: Principles of Security and Trust, Lecture Notes in Computer
Science, vol. 10804, pp. 270–277. Springer, 2018. doi: 10.1007/978-3-319-89722-6_11.

[Mol+18] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma statechart composition framework: design, verification and code generation for
component-based reactive systems. In: Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, pp. 113–116. ACM, 2018. doi: 10.1145/
3183440.3183489.

[Mol19] VinceMolnár. Extensions and generalization of the saturation algorithm inmodel check-
ing. PhD thesis. Budapest University of Technology and Economics, 2019.

[Mos+01] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Ma-
lik. Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th annual Design
Automation Conference, pp. 530–535. IEEE, 2001. doi: 10.1145/378239.379017.

[MRS03] Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking and in-
duction: from refutation to verification. In: Computer Aided Verification, Lecture Notes
in Computer Science, vol. 2725, pp. 14–26. Springer, 2003. doi: 10.1007/978-3-540-45069-
6_2.

[MS82] Javier Martínez and Manuel Silva. A simple and fast algorithm to obtain all invariants of
a generalised Petri net. In: Application and Theory of Petri Nets, Informatik-Fachberichte,
vol. 52, pp. 301–310. Springer, 1982. doi: 10.1007/978-3-642-68353-4_47.

129

https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/800076.802477
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-03427-6_22
https://doi.org/10.1007/978-3-540-31980-1_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://bertrandmeyer.com/2019/04/21/soundness-completeness-precision/
https://bertrandmeyer.com/2019/04/21/soundness-completeness-precision/
https://doi.org/10.1007/978-3-319-89722-6_11
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-540-45069-6_2
https://doi.org/10.1007/978-3-540-45069-6_2
https://doi.org/10.1007/978-3-642-68353-4_47

Bibliography

[MS99] João P Marques-Silva and Karem Sakallah. GRASP: a search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 1999, pp. 506–521.

[MSS16] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: a verification infras-
tructure for permission-based reasoning. In: Verification, Model Checking, and Abstract
Interpretation, Lecture Notes in Computer Science, vol. 9583, pp. 41–62. Springer, 2016.
doi: 10.1007/978-3-662-49122-5_2.

[Mue18] Bernhard Mueller. Smashing Ethereum smart contracts for fun and real profit. In: Pro-
ceedings of the 9th Annual HITB Security Conference, 2018.

[Mül02] Peter Müller.Modular specification and verification of object-oriented programs. Springer,
2002. doi: 10.1007/3-540-45651-1.

[Mur89] Tadao Murata. Petri nets: properties, analysis and applications. Proceedings of the IEEE
77(4), 1989, pp. 541–580. doi: 10.1109/5.24143.

[MV20] Milán Mondok and András Vörös. Abstraction-based model checking of linear temporal
properties. In: Proceedings of the 27th PhD Mini-Symposium, pp. 29–32. Budapest Uni-
versity of Technology and Economics, Department of Measurement and Information
Systems, 2020.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. url: http://www.
bitcoin.org/bitcoin.pdf.

[Nik+18] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding
the greedy, prodigal, and suicidal contracts at scale. In: Proceedings of the 34th Annual
Computer Security Applications Conference, pp. 653–663. ACM, 2018.

[NO79] Greg Nelson and Derek C Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems 1(2), 1979, pp. 245–257. doi:
10.1145/357073.357079.

[OHJ20] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming (Jack) Jiang. An exploratory study
of smart contracts in the Ethereum blockchain platform. Empirical Software Engineering,
2020. doi: 10.1007/s10664-019-09796-5.

[Pas+94] Enric Pastor, Oriol Roig, Jordi Cortadella, and Rosa M Badia. Petri net analysis using
Boolean manipulation. In: Application and Theory of Petri Nets 1994, Lecture Notes in
Computer Science, vol. 815, pp. 416–435. Springer, 1994. doi: 10.1007/3-540-58152-9_23.

[PCP99] Enric Pastor, Jordi Cortadella, and Marco A Peña. Structural methods to improve the
symbolic analysis of Petri nets. In: Application and Theory of Petri Nets 1999, Lecture
Notes in Computer Science, vol. 1639, pp. 26–45. Springer, 1999. doi: 10.1007/3- 540-
48745-X_3.

[Pel93] Doron Peled. All from one, one for all: on model checking using representatives. In:
Computer Aided Verification, Lecture Notes in Computer Science, vol. 697, pp. 409–423.
Springer, 1993. doi: 10.1007/3-540-56922-7_34.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis. Technische Universität
Darmstadt, 1962.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.
[Poe97] Arnd Poetzsch-Heffter. Specification and verification of object-oriented programs. Ha-

bilitation thesis. Technical University of Munich, 1997.

130

https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-45651-1
https://doi.org/10.1109/5.24143
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/357073.357079
https://doi.org/10.1007/s10664-019-09796-5
https://doi.org/10.1007/3-540-58152-9_23
https://doi.org/10.1007/3-540-48745-X_3
https://doi.org/10.1007/3-540-48745-X_3
https://doi.org/10.1007/3-540-56922-7_34

Bibliography

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In: International Symposium on Programming, Lecture Notes in Com-
puter Science, vol. 137, pp. 337–351. Springer, 1982. doi: 10.1007/3-540-11494-7_22.

[RE14] Zvonimir Rakamarić and Michael Emmi. SMACK: decoupling source language details
from verifier implementations. In: Computer Aided Verification, Lecture Notes in Com-
puter Science, vol. 8559, pp. 106–113. Springer, 2014. doi: 10.1007/978-3-319-08867-9_7.

[Rey+17] Andrew Reynolds, Cesare Tinelli, Dejan Jovanović, and Clark Barrett. Designing theory
solvers with extensions. In: Frontiers of Combining Systems, Lecture Notes in Computer
Science, vol. 10483, pp. 22–40. Springer, 2017. doi: 10.1007/978-3-319-66167-4_2.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74(2), 1953, pp. 358–366.

[RŞ10] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming 79(6), 2010, pp. 397–434. doi: 10.1016/j.jlap.
2010.03.012.

[RW19] Cedric Richter and HeikeWehrheim. PeSCo: predicting sequential combinations of veri-
fiers. In: Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science, vol. 11429, pp. 229–233. Springer, 2019. doi: 10.1007/978-3-030-
17502-3_19.

[Sal16] Gyula Sallai. Development of a Verification Compiler for C Programs. Bachelor’s Thesis.
Budapest University of Technology and Economics, 2016.

[Sal19] Gyula Sallai. LLVM IR-based Transformations for Software Model Checking. Master’s
thesis. Budapest University of Technology and Economics, 2019.

[Sch02] Philippe Schnoebelen. The complexity of temporal logic model checking. Advances in
modal logic 4(35), 2002, pp. 393–436.

[Sch03] Karsten Schmidt. Using Petri net invariants in state space construction. In: Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Sci-
ence, vol. 2619, pp. 473–488. Springer, 2003. doi: 10.1007/3-540-36577-X_35.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. JohnWiley & Sons, Inc.,
1986.

[Sch99] Karsteb Schmidt. Stubborn sets for standard properties. In: Application and Theory of
Petri Nets, Lecture Notes in Computer Science, vol. 1639, pp. 46–65. Springer, 1999. doi:
10.1007/3-540-48745-X_4.

[Seb07] Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean
Modeling and Computation 3, 2007, pp. 141–224.

[Ser+19] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and
Ken Chan Guan Hao. Safer smart contract programming with Scilla. Proceedings of the
ACM on Programming Languages 3(OOPSLA), 2019, 185:1–185:30. doi: 10.1145/3360611.

[SFB07] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slicing. In: Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation,
pp. 112–122. ACM, 2007. doi: 10.1145/1250734.1250748.

131

https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-66167-4_2
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/3-540-36577-X_35
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1145/3360611
https://doi.org/10.1145/1250734.1250748

Bibliography

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using
induction and a SAT-solver. In: Proceedings of the 2000 Conference on Formal Methods
in Computer-Aided Design, Lecture Notes in Computer Science, vol. 1954, pp. 127–144.
Springer, 2000. doi: 10.1007/3-540-40922-X_8.

[ST17] Gyula Sallai and Tamás Tóth. Boosting software verification with compiler optimiza-
tions. In: Proceedings of the 24th PhD Mini-Symposium, pp. 66–69. Budapest University
of Technology and Economics, Department of Measurement and Information Systems,
2017. doi: 10.5281/zenodo.291903.

[Sza94] Nick Szabo. Smart contracts. 1994.
[Teg18] Tamás Tegzes. Applying Incremental, Inductive Model Checking to Software. Bachelor’s

thesis. Budapest University of Technology and Economics, 2018.
[TM17] Tamás Tóth and István Majzik. Lazy reachability checking for timed automata using

interpolants. In: Formal Modelling and Analysis of Timed Systems, Lecture Notes in Com-
puter Science, vol. 10419, pp. 264–280. Springer, 2017. doi: 10.1007/978-3-319-65765-
3_15.

[TM18] Tamás Tóth and István Majzik. Lazy reachability checking for timed automata with
discrete variables. In: Model Checking Software, Lecture Notes in Computer Science,
vol. 10869, pp. 235–254. Springer, 2018. doi: 10.1007/978-3-319-94111-0_14.

[Tsa+18] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and
Martin Vechev. Securify: practical security analysis of smart contracts. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82.
ACM, 2018. doi: 10.1145/3243734.3243780.

[TTC96] Marco Tilgner, Yukio Takahashi, and Gianfranco Ciardo. SNS 1.0: synchronized network
solver. In: Proceedings of the 1st International Workshop on Manufacturing and Petri Nets,
pp. 215–234. 1996.

[Tul+14] Varun Tulsian, Aditya Kanade, Rahul Kumar, Akash Lal, and Aditya V Nori. MUX: al-
gorithm selection for software model checkers. In: Proceedings of the 11th Working Con-
ference on Mining Software Repositories, pp. 132–141. ACM, 2014. doi: 10.1145/2597073.
2597080.

[Tur36] Alan Mathison Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Journal of Math 58, 1936, pp. 345–363.

[Val91] Antti Valmari. Stubborn sets for reduced state space generation. In: Advances in Petri
Nets 1990, Lecture Notes in Computer Science, vol. 483, pp. 491–515. Springer, 1991. doi:
10.1007/3-540-53863-1_36.

[VDB11] András Vörös, Dániel Darvas, and Tamás Bartha. Bounded saturation based CTL model
checking. In: Proceedings of the 12th Symposium on Programming Languages and Software
Tools, SPLST’11, pp. 149–160. Tallinn University of Technology, Institute of Cybernetics,
2011.

[VG09] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In: Pro-
ceedings of the 2009 Conference on Formal Methods in Computer-Aided Design, pp. 1–8.
2009. doi: 10.1109/FMCAD.2009.5351148.

[Vör18] András Vörös. Symbolic Verification of Petri Net Based Models. PhD thesis. Budapest
University of Technology and Economics, 2018.

132

https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.5281/zenodo.291903
https://doi.org/10.1007/978-3-319-65765-3_15
https://doi.org/10.1007/978-3-319-65765-3_15
https://doi.org/10.1007/978-3-319-94111-0_14
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1109/FMCAD.2009.5351148

Bibliography

[VWM15] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and
their applications in model checking. Proceedings of the IEEE 103(11), 2015, pp. 2021–
2035.

[Wan+20] YuepengWang, Shuvendu K Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born, Immad
Naseer, and Kostas Ferles. Formal verification of workflow policies for smart contracts
in Azure blockchain. In: Verified Software. Theories, Tools, and Experiments, Lecture Notes
in Computer Science, vol. 12031, pp. 87–106. Springer, 2020. doi: 10.1007/978-3-030-
41600-3_7.

[WBK20] Lukas Westhofen, Philipp Berger, and Joost-Pieter Katoen. Benchmarking software
model checkers on automotive code. In: NASA Formal Methods, 2020. (In press).

[Web+19] Tjark Weber, Sylvain Conchon, David Déharbe, Matthias Heizmann, Aina Niemetz, and
Giles Reger. The SMT competition 2015–2018. Journal on Satisfiability, Boolean Modeling
and Computation 11(1), 2019, pp. 221–259.

[Wei81] Mark Weiser. Program slicing. In: Proceedings of the 5th International Conference on Soft-
ware Engineering, pp. 439–449. IEEE, 1981. doi: 10.1109/TSE.1984.5010248.

[WG16] Hadley Wickham and Garrett Grolemund. R for data science: import, tidy, transform, vi-
sualize, and model data. O’Reilly Media, Inc., 2016.

[Woh+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders
Wesslén. Experimentation in Software Engineering. Springer, 2012. doi: 10.1007/978-3-
642-29044-2.

[Wol18] Karsten Wolf. Petri net model checking with LoLA 2. In: Application and Theory of
Petri Nets and Concurrency, Lecture Notes in Computer Science, vol. 10877, pp. 351–362.
Springer, 2018. doi: 10.1007/978-3-319-91268-4_18.

[Wol19] Karsten Wolf. How Petri net theory serves Petri net model checking: a survey. In: Trans-
actions on Petri Nets and Other Models of Concurrency XIV, Lecture Notes in Computer
Science, vol. 11790, pp. 36–63. Springer, 2019. doi: 10.1007/978-3-662-60651-3_2.

[Woo17] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. 2017. url:
https://ethereum.github.io/yellowpaper/paper.pdf.

[WW11] Harro Wimmel and Karsten Wolf. Applying CEGAR to the Petri net state equation. In:
Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Com-
puter Science, vol. 6605, pp. 224–238. Springer, 2011. doi: 10.1007/978-3-642-19835-9_19.

[WW12] Harro Wimmel and Karsten Wolf. Applying CEGAR to the Petri net state equation. Log-
ical Methods in Computer Science 8(3), 2012, pp. 1–15.

133

https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-319-91268-4_18
https://doi.org/10.1007/978-3-662-60651-3_2
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1007/978-3-642-19835-9_19

	Introduction
	Properties and Challenges
	Problem Domains and Contributions
	Concurrent and Asynchronous Systems
	Embedded Software Code
	Blockchain-Based Decentralized Systems

	1 Extensions to the CEGAR Approach on Petri Nets
	1.1 Background
	1.1.1 Petri Nets
	1.1.2 Reachability Problem
	1.1.3 Linear Programming
	1.1.4 CEGAR for Petri Nets

	1.2 Extensions
	1.2.1 Reachability of Predicates
	1.2.2 Inhibitor Arcs
	1.2.3 Distant Invariants
	1.2.4 Hybrid Search

	1.3 Implementation
	1.4 Evaluation
	1.4.1 RQ1: Scalability
	1.4.2 RQ2: Comparison to Other Tools and Algorithms
	1.4.3 RQ3: Comparison of Search Strategies

	1.5 Related Work
	1.6 Summary and Future Work

	2 Efficient Strategies for CEGAR-based Software Model Checking
	2.1 Background
	2.1.1 Mathematical Logic
	2.1.2 Control-Flow Automata
	2.1.3 Counterexample-Guided Abstraction Refinement (CEGAR)

	2.2 Algorithmic Improvements
	2.2.1 Configurable Explicit Domain
	2.2.2 Error Location-Based Search
	2.2.3 Backward Binary Interpolation
	2.2.4 Multiple Refinements for a Counterexample

	2.3 Implementation
	2.4 Evaluation
	2.4.1 Experiment Planning
	2.4.2 Results and Analysis
	2.4.3 Comparison to Other Tools

	2.5 Related Work
	2.6 Summary and Future Work

	3 Modular Specification and Verification of Smart Contracts
	3.1 Background
	3.1.1 Blockchain-Based Systems
	3.1.2 Ethereum
	3.1.3 Solidity
	3.1.4 Boogie IVL
	3.1.5 Modular Verification

	3.2 Modular Specification and Verification for Solidity
	3.2.1 Specification Annotations
	3.2.2 Translation

	3.3 Implementation
	3.4 Evaluation
	3.4.1 RQ1: Language Coverage
	3.4.2 RQ2: Unannotated Contracts
	3.4.3 RQ3: Annotated Contracts

	3.5 Related Work
	3.6 Summary and Future Work

	Summary of the Research Results
	Thesis 1: Extensions to the CEGAR Approach on Petri Nets
	Thesis 2: Efficient Strategies for CEGAR-based Software Model Checking
	Thesis 3: Modular Specification and Verification of Smart Contracts

	Publications
	Publications Linked to the Theses
	Additional Publications (Not Linked to Theses)
	Additional Work

	Bibliography

