
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

A Survey on
CEGAR-based Model Checking

Master’s thesis

Author Supervisors
Ákos HAJDU Tamás TÓTH, András VÖRÖS

December 20, 2015

2

Contents

Kivonat 6

Abstract 7

1 Introduction 8

2 Background 10

2.1 Mathematical logic . 10

2.1.1 Propositional logic . 10

2.1.2 First order logic . 14

2.1.3 First order theories . 16

2.1.4 Interpolation . 19

2.2 Modeling formalisms . 20

2.2.1 Kripke structures . 20

2.2.2 Symbolic transition systems . 21

2.3 Temporal logic . 23

2.3.1 CTL* . 24

2.3.2 CTL . 25

2.3.3 LTL . 25

2.3.4 Expressive power of temporal logics 26

2.3.5 Safety properties . 26

2.4 Model checking . 27

Contents 3

3 Related work 29

3.1 Model checking approaches . 29

3.1.1 Explicit model checking . 29

3.1.2 Partial order reduction . 30

3.1.3 Symbolic model checking . 30

3.1.4 Bounded model checking . 30

3.1.5 Abstraction-based model checking 31

3.2 CEGAR-based model checking . 32

3.2.1 Abstraction types . 33

3.2.2 Modeling formalisms . 34

3.2.3 Combining with other techniques . 34

3.2.4 Tools . 35

4 Counterexample-Guided Abstraction Refinement 37

4.1 A generic CEGAR framework . 37

4.1.1 Existential abstraction . 37

4.1.2 The CEGAR loop . 41

4.2 Clustered CEGAR . 42

4.2.1 Initial abstraction . 43

4.2.2 Model checking . 47

4.2.3 Concretizing the counterexample . 49

4.2.4 Abstraction refinement . 50

4.3 Visibility-based CEGAR . 52

4.3.1 Initial abstraction . 52

4.3.2 Model checking . 53

4.3.3 Concretizing the counterexample . 54

4.3.4 Abstraction refinement . 54

4.4 Interpolating CEGAR . 56

4.4.1 Initial abstraction . 56

Contents 4

4.4.2 Model checking . 60

4.4.3 Concretizing the counterexample . 60

4.4.4 Abstraction refinement . 61

4.4.5 Optimization: incremental model checking 66

4.5 Summary . 67

5 Implementation 72

5.1 Architecture . 72

5.2 TTMC framework . 73

5.3 CEGAR core . 75

5.4 CEGAR algorithms . 77

5.5 Usage . 79

6 Evaluation 81

6.1 Simple finite state space models . 81

6.2 CERN PLC models . 83

6.3 Fischer’s protocol . 85

6.4 Profiling . 86

6.5 Summary . 87

7 Conclusion 88

Acknowledgment 90

List of figures 91

List of tables 93

Bibliography 94

Appendix 100

A.1 Notations . 100

A.2 Abbreviations . 102

A.3 Index . 103

HALLGATÓI NYILATKOZAT

Alulírott Hajdu Ákos, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-
dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2015. december 20.

Hajdu Ákos
hallgató

6

Kivonat

Napjainkban a formális verifikáció a hibamentesség és a specifikációnak való megfelelőség
igazolásának egyre gyakrabban alkalmazott eszköze, különösen a biztonságkritikus rend-
szerek területén, ahol ezen tulajdonságok matematikailag precíz bizonyítására van szükség.
A formális módszerek hátránya azonban a nagy számítási igényük. Ez az egyik legelter-
jedtebb formális verifikációs technikára, a modellellenőrzésre is igaz. A modellellenőrzés
célja, hogy automatikusan bizonyítsa egy rendszer helyességét a lehetséges viselkedéseinek
kimerítő (explicit vagy szimbolikus) vizsgálatával. Gyakran azonban kisméretű rendszerek
is rendelkezhetnek kezelhetetlenül sok vagy akár végtelen számú viselkedéssel. Bár létez-
nek megoldások ezen probléma leküzdésére, a modellek komplexitásának növekedésével
mindig újabb és hatékonyabb algoritmusokra van szükség.

Az ellenpélda-alapú absztrakció finomítás (Counterexample-Guided Abstraction Refine-
ment, CEGAR) módszere egy gyakran alkalmazott technika az előbbi probléma leküzdé-
sére. A CEGAR-alapú algoritmusok a rendszer modelljének egy absztrakcióján dolgoznak,
amely kisebb számítási kapacitással is kezelhető. Egy elterjedt technika a lehetséges vi-
selkedések felülbecslése a modell bizonyos kényszereinek egyszerűsítésével. Az absztrakció
durvasága miatt azonban a modellellenőrzés eredménye pontatlan lehet. Ilyen esetekben
az absztrakció finomítására van szükség. A CEGAR-alapú megközelítések általában egy
durva absztrakcióval kezdenek, hogy minimalizálják a számítási igényüket és ezt finomítják
addig, amíg el nem érik a pontos eredményt.

Diplomamunkámban megvizsgálom a tranzíciós rendszerek CEGAR-alapú modellellenőr-
zésének elméleti hátterét és a kapcsolódó szakirodalmat. A rendszerek és a velük kap-
csolatos követelmények formalizálására bemutatom az elsőrendű- és temporális logikákat
valamint megvizsgálok két konkrét CEGAR-alapú algoritmust, amely felülbecslésen alap-
szik. Emellett számos, a CEGAR hatékony megvalósítását lehetővé tevő technikát is be-
mutatok, többek között a SAT/SMT-megoldást, az interpolációt és a „lusta” absztrakciót.
Ezen algoritmusok és technikák előnyeit ötvözve elkészítek egy új algoritmust. A bemuta-
tott módszerek implementációját is elkészítettem annak érdekében, hogy kiértékelhessem
és összehasonlíthassam a különböző technikák teljesítményét. A különféle modelleken el-
végzett mérések elemzései rávilágítanak az algoritmusok előnyeire és hátrányaira.

7

Abstract

Formal verification is becoming more prevalent, especially in the development of safety-
critical systems, where mathematically precise proofs are required to ensure suitability and
faultlessness. However, a major drawback of formal methods is their high computational
complexity. This also holds for model checking, one of the most prevalent formal verifi-
cation techniques. Model checking aims to automatically verify a system by exhaustively
(explicitly or symbolically) analyzing its possible behaviors. However, relatively small
systems can have an unmanageably large or even infinite number of behaviors. There are
several existing approaches to handle this problem, but as the complexity of the models
increases, new and more efficient algorithms are required.

A widely used technique to overcome the former problem is Counterexample-Guided Ab-
straction Refinement (CEGAR). CEGAR-based approaches work on an abstraction of the
model, which is computationally easier to handle. A common abstraction scheme is to
over-approximate the set of behaviors by systematically relaxing constraints in the model.
However, the result of the algorithm may be imprecise due to the coarseness of the abstrac-
tion. In such cases, the abstraction has to be refined. CEGAR-based approaches usually
start with a coarse abstraction to minimize computational cost and apply refinement until
a precise result is obtained.

In my work I examine the literature and the theoretical background of model checking
of transition systems using CEGAR-based approaches. I present first order and temporal
logic for formalizing systems and requirements, and I analyze two CEGAR algorithms
based on different subtypes of over-approximation. I also examine a handful of related
techniques that can make CEGAR more efficient, including SAT/SMT solving, interpola-
tion and lazy abstraction. I also propose a new algorithm that combines the advantages
of these approaches and techniques. I have implemented these algorithms in order to eval-
uate and compare their performance. Analysis of the measurement results highlights the
advantages and shortcomings of the algorithms for several types of models.

8

Chapter 1

Introduction

“Society is increasingly dependent on dedicated computer and software systems
to assist us in almost every aspect of daily life. Often we are not even aware
that computers and software are involved. [. . .] Therefore a main challenge for
the field of computer science is to provide formalisms, techniques, and tools that
will enable the efficient design of correct and well-functioning systems despite
their complexity.” [1]

As Baier et al. states in [1], the trust and reliance on properly functioning hardware and
software systems is rapidly increasing. Such systems can be found in safety-critical envi-
ronments as well, where malfunction or failure can lead to serious damage (e.g., airplane
control systems) or financial consequences (e.g., security protocols). The currently applied
techniques for verifying these systems are usually testing and simulation, where the prod-
uct or the prototype is given some input and its output is checked against the expected
behavior. However, testing and simulation can only prove the presence of faults, but not
their absence. Unless every possible input combination is checked (which is typically im-
possible in practice), it is not sure whether some erroneous executions are missed. These
techniques are effective in the early phase of development to quickly catch faults, but their
effectiveness rapidly decreases as more and more subtle errors have to be discovered. Also,
as the complexity of systems grows, the number of hardly reproducible errors increases.

An attractive approach aiming to solve this problem is formal verification. Formal verifi-
cation techniques have a sound mathematical basis and can prove the correctness of the
system with mathematical precision. A widely studied formal verification technique is
model checking, which aims to determine whether the model of a system meets a given
requirement by exhaustively analyzing all possible behaviors of the system. However, a
major drawback of formal methods (including model checking) is their high computational
complexity. The set of possible states and behaviors of a system can become unmanageably
large or even infinite. Therefore, explicitly enumerating all behaviors is just as impossible
in practice as testing each input combination. Many approaches have been proposed to

9

overcome the so-called “state space explosion” problem, including partial order reduction,
symbolic methods, bounded model checking and abstraction-based techniques. Among
these, my thesis focuses on abstraction.

Abstraction is a general mathematical approach for solving hard problems. In the context
of model checking, abstraction means to work on a less detailed representation of the state
space. My thesis focuses on existential abstraction, which over-approximates the set of
possible behaviors by systematically relaxing constraints in the system. Therefore, if the
abstract model meets a requirement, then it also holds for all behaviors of the original
model. However, a behavior violating the requirement (i.e., a counterexample) can be
caused by the coarseness of the abstraction and consequently, it cannot be reproduced
in the original model. In such cases a finer abstraction is required. The main challenge
of abstraction-based techniques is to find the proper level of abstraction, which is coarse
enough to avoid state space explosion, but fine enough to admit the verification of the
requirement. The so-called Counterexample-Guided Abstraction Refinement (CEGAR)
approach is an automatic method for finding the proper level of abstraction. It starts
with a coarse abstraction first and applies refinement (based on the non-reproducible
counterexamples) until the requirement can be verified.

CEGAR is a general approach that has been applied to a wide variety of modeling for-
malisms and different types of abstractions. There are also several related techniques that
work well along with CEGAR. In my thesis I examine two algorithms from the litera-
ture for CEGAR-based model checking of transition systems. The two approaches use
two different abstraction types, namely predicate abstraction and visible variables. I also
study a handful of related techniques, including SAT/SMT solving, lazy abstraction and
interpolation, which aim to make CEGAR-based approaches more efficient. I propose a
new algorithm that combines the advantages of the two abstraction types and the related
techniques. In order to evaluate and compare the algorithms and the related methods, I
implement them in a formal verification framework developed at the Fault Tolerant Sys-
tems Research Group of Budapest University of Technology and Economics. I evaluate
the performance of the algorithms on several types of models, having small, large and
infinite state spaces. Measurement results show that all approaches have advantages and
shortcomings depending on the type of the model.

The thesis is structured as follows. Chapter 2 introduces the preliminaries of my contribu-
tions. Chapter 3 briefly summarizes related work in the field of model checking, especially
focusing on abstraction-based techniques and CEGAR. Chapter 4 describes three CEGAR
algorithms based on a common, general framework for existential abstraction. Chapter 5
presents the main architecture of the implementation and highlights some of the important
details and features. Chapter 6 evaluates and compares the performance of the algorithms
on several models. Finally, Chapter 7 concludes my work. An appendix is also provided
to collect the various symbols, notations, abbreviations and definitions.

10

Chapter 2

Background

This chapter introduces the preliminaries of my thesis. Section 2.1 briefly describes the ba-
sic concepts of mathematical logic that are used throughout the thesis. Formal verification
techniques (such as model checking) require both models and requirements with mathe-
matically precise syntax and semantics. I introduce modeling formalisms in Section 2.2
and I present temporal logic for formalizing the requirements in Section 2.3. Finally, I
describe the model checking problem itself in Section 2.4.

2.1 Mathematical logic

This section gives a brief introduction to propositional (Section 2.1.1) and first order logic
(Section 2.1.2) that are often used to reason about system designs. I also describe some
first order theories (Section 2.1.3) to formalize the behavior of data, e.g., numbers. Finally,
Section 2.1.4 presents interpolation techniques that play an important role in my thesis.
This section is based on the book of Bradley and Manna [2]. The reader is also referred
to this book for more details on mathematical logic.

2.1.1 Propositional logic

This section presents propositional logic (PL), which is capable of reasoning about Boolean
variables and formulas. I introduce the syntax and semantics of PL, the basic definitions
and some important normal forms as well.

Syntax

Basic elements of propositional logic are the truth symbols ⊤ (true), ⊥ (false) and the
propositional variables (usually denoted by P or Q). A formula ϕ can be constructed from
truth symbols, propositional variables and the application of the following connectives to
a formula ϕ1 or ϕ2:

2.1. Mathematical logic 11

• ¬ϕ1 (negation),
• ϕ1 ∧ ϕ2 (conjunction),
• ϕ1 ∨ ϕ2 (disjunction),
• ϕ1 → ϕ2 (implication),
• ϕ1 ↔ ϕ2 (if and only if).

An atom is a truth symbol ⊤, ⊥ or a propositional variable. A literal is an atom or its
negation. A clause is a disjunction of literals. A formula ψ is a subformula of ϕ if ψ occurs
syntactically inside ϕ. The size of a formula ϕ (denoted by |ϕ|) is the total number of
truth symbols, propositional variables and connectives in ϕ.

The precedence of connectives is the following, from highest to lowest: ¬, ∧, ∨, →, ↔.
Moreover, → and ↔ are right associative, e.g., ϕ1 → ϕ2 → ϕ3 equals to ϕ1 → (ϕ2 → ϕ3).

Example 2.1. The formula ϕ = (P ∧¬Q)∨⊥ is constructed from a truth symbol ⊥, two
variables P,Q and three connectives ∧,¬,∨. The subformulas of ϕ are {P,Q,⊥,¬Q, (P ∧
¬Q), ϕ}. Among these, P , Q, ⊥ are atoms and P , Q, ¬Q, ⊥ are literals. The size of ϕ
is |ϕ| = 6.

Semantics

An interpretation I assigns a truth value to every propositional variable, for example,
I = {P1 ↦→ ⊥, P2 ↦→ ⊤, P3 ↦→ ⊥, . . .}. Given a formula ϕ and an interpretation I,
I |= ϕ (I “models” ϕ) denotes that ϕ evaluates to true under I, while I ̸|= ϕ denotes
that ϕ evaluates to false. The relation |= is defined inductively as follows, where I is
an interpretation, P is a propositional variable, ϕ1, ϕ2 are formulas and I[P] denotes the
truth value of P under I [2]:

1. I |= ⊤,
2. I ̸|= ⊥,
3. I |= P iff I[P] = ⊤,
4. I ̸|= P iff I[P] = ⊥,
5. I |= ¬ϕ1 iff I ̸|= ϕ1,
6. I |= ϕ1 ∧ ϕ2 iff I |= ϕ1 and I |= ϕ2,
7. I |= ϕ1 ∨ ϕ2 iff I |= ϕ1 or I |= ϕ2,
8. I |= ϕ1 → ϕ2 iff, if I |= ϕ1 then I |= ϕ2,
9. I |= ϕ1 ↔ ϕ2 iff I |= ϕ1 and I |= ϕ2, or I ̸|= ϕ1 and I ̸|= ϕ2.

Satisfiability and validity

A formula ϕ is satisfiable iff an interpretation I with I |= ϕ exists. A formula ϕ is valid
(denoted by |= ϕ) iff I |= ϕ for every interpretation I. Satisfiability and validity are the
duals of each other: ϕ is valid iff ¬ϕ is unsatisfiable.

2.1. Mathematical logic 12

Example 2.2. The formula ¬P ∧ (P ∨ Q) is satisfiable by I = {P ↦→ ⊥, Q ↦→ ⊤},
but the formula P ∧ ¬P is unsatisfiable. The formula P ∨ ¬P is valid, since for each
interpretation either P or ¬P will evaluate to true.

Definition 2.1 (Boolean satisfiability problem). The Boolean satisfiability problem
(SAT) is to decide whether a formula ϕ is satisfiable.

SAT was the first problem shown to be NP-complete1 [3]. This means that no efficient
algorithm is believed to exist regarding worst-case complexity. However, in practical sce-
narios, modern SAT solvers can handle problems with up to tens of millions of variables
and clauses [4]. Most SAT solvers are based on the Davis–Putnam–Logemann–Loveland
(DPLL) [5] and Conflict-Driven Clause Learning (CDCL) [6] algorithms. DPPL applies
case-splitting at each variable and if a conflicting assignment is encountered, it backtracks
to the previous case-split. CDCL avoids the re-exploration of conflicting assignments by
learning the cause of the conflict as a clause. For more details on the SAT problem and
SAT solving, the reader is referred to [7].

Equivalence and implication

The formulas ϕ1 and ϕ2 are equivalent if ϕ1 ↔ ϕ2 is valid, i.e., either I |= ϕ1 and I |= ϕ2

or I ̸|= ϕ1 and I ̸|= ϕ2 holds for every interpretation I. A formula ϕ1 implies the formula
ϕ2 if ϕ1 → ϕ2 is valid, i.e., for every interpretation I with I |= ϕ1, I |= ϕ2 also holds.
Equivalence and implication is denoted by ϕ1 ⇔ ϕ2 and ϕ1 ⇒ ϕ2 respectively [2].

Example 2.3. An example on implication is [(P ∨Q) ∧ ¬Q]⇒ P , which is also known
as resolution and an example on equivalence is ¬(P ∧ Q) ⇔ (¬P ∨ ¬Q), which is also
known as one of De Morgan’s rules.

Normal forms

Normal forms are restrictions on the syntactic structure of a formula. The rationale behind
normal forms is that they can simplify the task of the algorithms by reducing the full (and
usually redundant) syntax and providing the necessary transformations.

Negation normal form (NNF) requires that only the connectives ¬, ∧, ∨ are used and
negations can only appear in literals. A formula ϕ can be transformed into an equivalent
formula ϕ′ in NNF using the following equivalences, where ϕ1 and ϕ2 are formulas [2]:

1. ¬¬ϕ1 ⇔ ϕ1,
2. ¬⊤ ⇔ ⊥,
3. ¬⊥ ⇔ ⊤,
4. ¬(ϕ1 ∧ ϕ2)⇔ ¬ϕ1 ∨ ¬ϕ2,
5. ¬(ϕ1 ∨ ϕ2)⇔ ¬ϕ1 ∧ ¬ϕ2,
1The result was found by Cook (1971) and by Levin (1973) independently.

2.1. Mathematical logic 13

6. ϕ1 → ϕ2 ⇔ ¬ϕ1 ∨ ϕ2,
7. ϕ1 ↔ ϕ2 ⇔ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

Example 2.4. The formula ¬(P∧¬Q) can be transformed by first using Rule 4 to obtain
¬P ∨ ¬¬Q, then using Rule 1 to obtain the NNF formula ¬P ∨Q.

A formula in conjunctive normal form (CNF) is a conjunction of clauses, i.e.,
⋀
i

⋁
j li,j ,

where li,j is a literal. CNF is an important normal form, since many SAT solvers work on
a CNF input [8]. A formula ϕ can be transformed into an equivalent formula ϕ′ in CNF
by transforming ϕ first into NNF and then using the following distributivity rules [2]:

1. (ϕ1 ∧ ϕ2) ∨ ϕ3 ⇔ (ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3),
2. ϕ1 ∨ (ϕ2 ∧ ϕ3)⇔ (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3).

Example 2.5. The NNF formula (P1 ∧ ¬P2) ∨ (¬Q1 ∧ Q2) can be transformed by first
using Rule 1 to obtain [P1∨ (¬Q1∧Q2)]∧ [¬P2∨ (¬Q1∧Q2)], then Rule 2 twice to obtain
the CNF formula (P1 ∨ ¬Q1) ∧ (P1 ∨Q2) ∧ (¬P2 ∨ ¬Q1) ∧ (¬P2 ∨Q2).

The problem with the transformation above is that the CNF formula ϕ′ can be expo-
nentially large compared to ϕ. However, to decide satisfiability, ϕ′ is only required to
be equisatisfiable. Two formulas ϕ and ϕ′ are equisatisfiable if ϕ is satisfiable iff ϕ′ is
satisfiable.

Tseitin suggested a transformation into an equisatisfiable CNF formula ϕ′ that has linear
size increase regarding ϕ [9]. Each subformula ψ of ϕ (including ϕ itself) is associated
with a new propositional variable Pψ such that the truth value of Pψ is the same as ψ.
This mapping is done by the “representative” (rep) function in the following way:

1. rep(⊤) = ⊤,
2. rep(⊥) = ⊥,
3. rep(P) = P for a propositional variable P ,
4. rep(ψ) = Pψ for a formula ψ, where Pψ is an unique variable for ψ.

The “encoding” (en) function is responsible for asserting the equivalence of ψ and Pψ

(ψ ⇔ Pψ) as a CNF formula. This mapping is defined in the following way:

1. en(⊤) = ⊤,
2. en(⊥) = ⊤,
3. en(P) = ⊤,
4. en(¬ψ) = (¬P ∨ ¬rep(ψ)) ∧ (P ∨ rep(ψ)), where P = rep(¬ψ),
5. en(ψ1 ∧ ψ2) = (¬P ∨ rep(ψ1)) ∧ (¬P ∨ rep(ψ2)) ∧ (¬rep(ψ1) ∨ ¬rep(ψ2) ∨ P), where
P = rep(ψ1 ∧ ψ2),

6. en(ψ1 ∨ ψ2) = (¬P ∨ rep(ψ1) ∨ rep(ψ2)) ∧ (¬rep(ψ1) ∨ P) ∧ (¬rep(ψ2) ∨ P), where
P = rep(ψ1 ∨ ψ2),

2.1. Mathematical logic 14

7. en(ψ1 → ψ2) = (¬P ∨ ¬rep(ψ1) ∨ rep(ψ2)) ∧ (rep(ψ1) ∨ P) ∧ (¬rep(ψ2) ∨ P), where
P = rep(ψ1 → ψ2),

8. en(ψ1 ↔ ψ2) = (¬P∨¬rep(ψ1)∨rep(ψ2))∧(¬P∨rep(ψ1)∨¬rep(ψ2))∧(P∨¬rep(ψ1)∨
¬rep(ψ2)) ∧ (P ∨ rep(ψ1) ∨ rep(ψ2)), where P = rep(ψ1 ↔ ψ2).

Given a formula ϕ with its subformulas Sϕ, the formula ϕ′ = rep(ϕ) ∧
⋀
ψ∈Sϕ

en(ψ) is
in CNF, is equisatisfiable to ϕ and has size at most 30|ϕ| + 2 compared to the original
formula [2]. An optimization was proposed in [10], which yields a smaller CNF formula
by considering the structure of the original formula.

Example 2.6 (from [2]). Consider the formula ϕ = (Q1 ∧Q2)∨ (Q3 ∧Q4). Its subfor-
mulas are Sϕ = {Q1, Q2, Q3, Q4, Q1 ∧Q2, Q3 ∧Q4, ϕ}. The encoding is:

• en(Q1) = en(Q2) = en(Q3) = en(Q4) = ⊤,
• en(Q1 ∧Q2) = (¬P(Q1∧Q2) ∨Q1) ∧ (¬P(Q1∧Q2) ∨Q2) ∧ (¬Q1 ∨ ¬Q2 ∨ P(Q1∧Q2)),
• en(Q3 ∧Q4) = (¬P(Q3∧Q4) ∨Q3) ∧ (¬P(Q3∧Q4) ∨Q4) ∧ (¬Q3 ∨ ¬Q4 ∨ P(Q3∧Q4)),
• en(ϕ) = (¬P(ϕ) ∨ P(Q1∧Q2) ∨ P(Q3∧Q4)) ∧ (¬P(Q1∧Q2) ∨ P(ϕ)) ∧ (¬P(Q3∧Q4) ∨ P(ϕ)),

and ϕ′ = P(ϕ) ∧
⋀
ψ∈Sϕ

en(ψ), which is equisatisfiable to ϕ and is in CNF.

2.1.2 First order logic

Boolean satisfiability has a tremendous importance in computer science. However, some
problems can be expressed more naturally in richer languages. This section presents
first order logic (FOL), which extends propositional logic with predicates, functions and
quantifiers. Consequently, formulas in FOL can not only evaluate to truth values, but to
any abstract concept, e.g., integers, animals, names.

Syntax

The basic elements of FOL are terms that can be variables (x, y, z, . . .) and constants
(a, b, c, . . .). Complex terms are created by functions (f, g, h, . . .). A constant can also
be regarded as a 0-ary function. Propositional variables are generalized to predicates
(p, q, r, . . .). An n-ary predicate has n terms as arguments. A propositional variable in
FOL can also be regarded as a 0-ary predicate.

Atoms, literals and formulas are generalized for FOL as well. An atom is ⊤, ⊥, or an n-ary
predicate applied to n terms. A literal is an atom or its negation. A formula is a literal
or the application of connectives (¬, ∧, ∨, →, ↔) and quantifiers. The two quantifiers
are the existential quantifier (denoted by ∃x.ϕ[x]) and the universal quantifier (denoted
by ∀x.ϕ[x]). The variable x is the quantified variable and ϕ[x] is the scope. The variable
x is also said to be bound (by the quantifier). A variable is free in a formula ϕ if it has a

2.1. Mathematical logic 15

non-bound occurrence. A formula is closed if it contains no free variables. If a formula ϕ
is not closed and x1, x2, . . . , xn are the free variables of ϕ, then the universal closure of ϕ
is ∀x1.∀x2. . . .∀xn.ϕ and the existential closure is ∃x1.∃x2. . . .∃xn.ϕ.

The precedence of connectives and quantifiers is the following, from highest to lowest: ¬,
∧, ∨, →, ↔, ∀, ∃.

Semantics

Formulas of FOL do not only evaluate to true or false, but to any value from a specified
domain. An interpretation I is therefore, a pair of a domain DI and an assignment αI .
The domain DI is a nonempty set of abstract objects (e.g., integers, animals, names). The
assignment αI maps

• constants to elements in DI ,
• variable symbols x to values xI ∈ DI ,
• n-ary function symbols f to n-ary functions fI : Dn

I ↦→ DI ,
• n-ary predicate symbols p to n-ary predicates pI : Dn

I ↦→ {⊤,⊥}.

Example 2.7 (from [2]). The formula (x+ y > z)→ (y > z − x) contains the binary
function symbols “+”, “−”, the binary predicate symbol “>” and variables x, y, z. Since
“+”, “−” and “>” are just symbols, the formula p(f(x, y), z) → p(y, g(z, x)) has the
same meaning. To construct an interpretation, let DI = Z = {. . . ,−2,−1, 0, 1, 2, . . .}
and let “+”, “−” and “>” be the standard addition, subtraction and greater-than relation
over integers. Finally, let x, y and z be 13, 42 and 1 respectively. Thus, the assignment
is αI = {+ ↦→ +Z,− ↦→ −Z, >↦→>Z, x ↦→ 13, y ↦→ 42, z ↦→ 1, . . .}.

Arbitrary terms can be evaluated recursively, i.e., αI [f(t1, t2, . . . , tn)] = αI [f](αI [t1],
αI [t2], . . . , αI [tn]) for a function f and αI [p(t1, t2, . . . , tn)] = αI [p](αI [t1], αI [t2], . . . ,
αI [tn]) for a predicate p. Given a FOL formula ϕ and an interpretation I(DI , αI) the
relation |= is defined inductively as follows [2], where p is a predicate and t1, t2, . . . , tn are
terms:

1. I |= ⊤,
2. I ̸|= ⊥,
3. I |= p(t1, t2, . . . , tn) iff αI [p(t1, t2, . . . , tn)] = ⊤,
4. rules for the connectives ¬, ∧, ∨, →, ↔ work as in PL.

For quantifiers, let I ′ = I ▹ {x ↦→ v} denote the x-variant of the interpretation I, where
DI′ = DI and αI′ [y] = αI [y] for all constant, free variable, function and predicate symbols,
except for x, where αI′ [x] = v. Then |= is defined as follows [2]:

5. I |= ∀x.ϕ iff for all v ∈ DI , I ▹ {x ↦→ v} |= ϕ,
6. I |= ∃x.ϕ iff a v ∈ DI exists with I ▹ {x ↦→ v} |= ϕ.

2.1. Mathematical logic 16

Satisfiability and validity

Satisfiability and validity is defined similarly to PL: a formula ϕ is satisfiable iff an inter-
pretation I with I |= ϕ exists and it is valid iff I |= ϕ holds for every interpretation I.
Technically, satisfiability and validity can only be applied to closed FOL formulas. How-
ever, by convention a non-closed formula is said to be satisfiable if its existential closure
is satisfiable and it is said to be valid if its universal closure is valid. Church [11] and
Turing [12] proved that satisfiability (and consequently, also validity) is undecidable for
FOL in the general case.

2.1.3 First order theories

First order theories formalize the structures (e.g., numbers, lists, . . .) of a domain to enable
reasoning about them formally. While satisfiability in FOL is undecidable in general, it is
decidable in many practical first order theories (or in their fragments). In this section I
describe some theories that I use in my work. However, the CEGAR algorithms presented
in Chapter 4 can handle other theories as long as the underlying solver supports them.

Definition 2.2 (First order theory). A first order theory T = (Σ,A) [2] is defined
by

• a signature Σ, which is the set of constant, function and predicate symbols,
• a set of axioms A, which is a set of closed FOL formulas, in which only constant,

function and predicate symbols of Σ appear.

A Σ-formula is constructed from constant, function and predicate symbols of Σ along with
variables, connectives and quantifiers. The axioms A provide meaning for the formulas.
A Σ-formula ϕ is valid in T (or T -valid), if every interpretation I satisfying the axioms
also satisfies ϕ (i.e., if I |= ϕA for all ϕA ∈ A, then I |= ϕ). This is denoted by T |= ϕ. A
Σ-formula ϕ is satisfiable in T (or T -satisfiable) if an interpretation I exists that satisfies
the axioms and ϕ. A theory T is complete if for every closed Σ-formula ϕ either T |= ϕ or
T |= ¬ϕ holds. A theory T is decidable, if T |= ϕ is decidable by an algorithm for every
Σ-formula ϕ.

Equality

One of the simplest first order theories is the theory of equality (TE). Its signature ΣE =
{ .=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .} consists of the binary predicate “ .=” (equality) and a
countable number of constant, function and predicate symbols. To distinguish between
equality in a theory T and equality in the meta-theory, I denote the former one with “ .=”
and the latter one with “=”. The axioms AE listed below give meaning to the equality
symbol [2]:

2.1. Mathematical logic 17

1. ∀x. x .= x (reflexivity),
2. ∀x, y. x .= y → y

.= x (symmetry),
3. ∀x, y, z. x .= y ∧ y .= z → x

.= z (transitivity),
4. ∀x1, x2, . . . , xn, y1, y2, . . . yn. (

⋀
i xi

.= yi) → f(x1, x2, . . . , xn) .= f(y1, y2, . . . , yn) for
each n ∈ Z+ and n-ary function symbol f ,

5. ∀x1, x2, . . . , xn, y1, y2 . . . yn. (
⋀
i xi

.= yi) → p(x1, x2, . . . , xn) ↔ p(y1, y2, . . . , yn) for
each n ∈ Z+ and n-ary predicate symbol p.

The first three axioms state that equality is an equivalence relation, while the last two
state that it is a congruence relation. I also use x ̸ .= y to denote ¬(x .= y). The theory of
equality is undecidable in general, but its quantifier-free fragment is decidable [2].

Presburger arithmetic

The theory of Presburger arithmetic (TN) has the signature ΣN = {0, 1,+, .=}, where 0
and 1 are constants, “+” (addition) is a binary function and “ .=” (equality) is a binary
predicate. The axioms AN are the following [2]:

1. ∀x. ¬(x+ 1 .= 0) (zero),
2. ∀x, y. x+ 1 .= y + 1→ x

.= y (successor),
3. ϕ[0] ∧ (∀x. ϕ[x]→ ϕ[x+ 1])→ ∀x. ϕ[x] (induction),
4. ∀x. x+ 0 .= x (plus zero),
5. ∀x, y. x+ (y + 1) .= (x+ y) + 1 (plus successor).

Presburger showed that TN is decidable [13]. The theory of integers (TZ) has the signature
ΣZ = {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . ,+,−, .=, >}, where . . . ,−2,−1, 0, 1, 2, . . .
are constants, . . . ,−3·,−2·, 2·, 3·, . . . are unary functions representing constant coefficients,
“−” and “+” are binary functions, “ .=” and “>” are binary predicates having the obvious
corresponding meaning in the domain of integers. Each formula of ΣZ can be encoded
in ΣN, hence the theory of integers is just a syntactic extension of Presburger arithmetic.
Peano arithmetic (TPA) however, introduces multiplication, which renders it incomplete
and undecidable [14].

Theory of rationals

The theory of rationals (TQ) has the signature ΣQ = {0, 1,+,−, .=,≥}, where 0 and 1
are constants, “+” (addition) is a binary function, “−” (negation) is an unary function,
“ .=” (equality) and “≥” (weak inequality) are binary predicates. The axioms AQ are the
following [2]:

1. ∀x, y. x ≥ y ∧ y ≥ x→ x
.= y (antisymmetry),

2.1. Mathematical logic 18

2. ∀x, y, z. x ≥ y ∧ y ≥ z → x ≥ z (transitivity),
3. ∀x, y. x ≥ y ∨ y ≥ x (totality),
4. ∀x, y, z. (x+ y) + z

.= x+ (y + z) (associativity),
5. ∀x. x+ 0 .= x (identity),
6. ∀x. x+ (−x) .= 0 (inverse),
7. ∀x, y. x+ y

.= y + x (commutativity),
8. ∀x, y, z. x ≥ y → x+ z ≥ y + z (ordered),
9. ∀x. nx .= 0→ x

.= 0, for each n ∈ Z+, where nx is x added to itself x times (torsion
free),

10. ∀x.∃y. x .= ny, for each n ∈ Z+ (divisible).

The theory of rationals is decidable by eliminating quantifiers [2] and then using linear
programming [15].

Satisfiability modulo theories

Similarly to the SAT problem in propositional logic, satisfiability is also defined for first
order logic with a background theory [16].

Definition 2.3 (Satisfiability modulo theories). The satisfiability modulo theories
(SMT) problem is to decide if a Σ-formula is satisfiable in a theory T = (Σ,A).

The first SMT solvers transformed the SMT formula into an equisatisfiable PL formula
and used an “off-the-shelf” SAT solver. This concept is called the eager approach [17]
and it is similar to compiling a high-level program into machine code. The drawback of
this method is the possibly large size of the transformed formula. Modern SMT solvers
therefore, usually implement the lazy approach [18]. The lazy approach uses a SAT solver
as the propositional core by replacing FOL atoms with propositional variables. If the
propositional formula is unsatisfiable, then so is the SMT formula. On the other hand, if
the SAT solver finds an interpretation, it is checked with a theory solver. Theory solvers
are specialized in checking the consistency of a set of literals. If the interpretation is
contradicting in the theory T , then its negation is valid. Therefore, it is added to the
propositional formula and the SAT solver is called again.

Example 2.8 (from [19]). Consider the formula ϕ = ¬(a ≥ 3) ∧ (a ≥ 3 ∨ a ≥ 5)
with the background theory TQ. At first, the atomic formulas are replaced by variables
to obtain the propositional formula ϕ′ = ¬P ∧ (P ∨ Q). The SAT solver yields the
interpretation {P ↦→ ⊥, Q ↦→ ⊤}, representing ¬(a ≥ 3) ∧ a ≥ 5. However ¬(a ≥ 3) and
a ≥ 5 cannot be true at the same time in TQ. Therefore, ψ = a ≥ 3 ∨ ¬(a ≥ 5) must be
valid, which is translated into ψ′ = P ∨ ¬Q. The SAT solver is now given the formula
ϕ′ ∧ ψ′ = ¬P ∧ (P ∨Q) ∧ (P ∨ ¬Q), which is proved to be unsatisfiable, implying that ϕ
is also unsatisfiable.

2.1. Mathematical logic 19

In practical cases, an SMT problem is a combination of several theories (e.g., 1 < x∧ x <
4 ∧ f(x) ̸ .= f(2)). Nelson and Oppen proposed a method for deciding the SMT problem
for the union of disjoint, stably-infinite, quantifier-free decidable theories [20].

2.1.4 Interpolation

This section presents Craig interpolants and interpolation sequences, which play an im-
portant role in SAT/SMT-based model checking [8] and also in my thesis (Section 4.4).

Definition 2.4 (Craig interpolant). Let α and β be FOL formulas such that α∧β is
unsatisfiable. A formula I is a Craig interpolant (or simply an interpolant) for (α, β) if
the following properties hold [21]:

• α⇒ I ,
• I ∧ β is unsatisfiable,
• I refers only to common symbols of α and β (excluding the symbols of the logic).

Informally this means that I generalizes α, but it can still contradict β. William Craig
showed that an interpolant always exists for FOL formulas α and β with at least one
symbol in common and α∧β being unsatisfiable [22]. Craig interpolants can be generated
efficiently from refutation proofs both in PL [23] and several quantifier-free theories [24].

Example 2.9. Let α be (x .= y ∧ x .= z) and let β be (y .= t ∧ t ̸ .= z). The conjunction
α ∧ β is clearly unsatisfiable. The formula (y .= z) is an interpolant for (α, β), since

• (x .= y ∧ x .= z)⇒ (y .= z),
• (y .= z) ∧ (y .= t ∧ t ̸ .= z) is unsatisfiable,
• (y .= z) contains only the symbols y and z which are present both in α and β.

Interpolation can be extended from two formulas to a sequence of formulas in the following
way.

Definition 2.5 (Interpolation sequence). Let α1, α2, . . . , αn be a sequence of FOL
formulas such that α1∧α2∧. . .∧αn is unsatisfiable. A sequence of formulas I0,I1, . . . ,In

is an interpolation sequence for α1, α2, . . . , αn if the following properties hold [25]:

• I0 = ⊤, In = ⊥,
• Ij ∧ αj+1 ⇒ Ij+1 for 0 ≤ j < n,
• Ij refers only to common symbols of α1, . . . , αj and αj+1, . . . , αn for 0 < j < n.

Example 2.10. Let α1 = (x > 3 ∧ x .= y), α2 = (z > y) and α3 = (z < 2). The
conjunction α1 ∧ α2 ∧ α3 is clearly unsatisfiable. The formulas I0 = ⊤, I1 = (y > 3),
I2 = (z > 3), I3 = ⊥ form an interpolation sequence, since:

• ⊤ ∧ (x > 3 ∧ x .= y)⇒ (y > 3),
• (y > 3) ∧ (z > y)⇒ (z > 3),

2.2. Modeling formalisms 20

• (z > 3) ∧ (z < 2)⇒ ⊥,
• I1 refers to y, which is present in α1 and α2, α3,
• I2 refers to z, which is present in α1, α2 and α3.

Interpolation sequences can be calculated iteratively by computing Craig interpolants for
α = Ij−1 ∧ αj and β =

⋀n
i=j+1 αi for each 1 ≤ j ≤ n using the same refutation [25].

2.2 Modeling formalisms

Formal verification techniques require models with mathematically precise syntax and
semantics. There are several existing low- and high-level modeling formalisms. Most of
the low-level models explicitly represent the possible states and behaviors of the system
using graphs with labeled nodes or edges. Such models can be handled easily by formal
verification algorithms. However, even relatively simple systems can have a complex low-
level representation, which renders these formalisms unsuitable for practical use. Kripke
structures and transition systems (presented in Section 2.2.1) are widely used in model
checking as a low-level formalism.

High-level formalisms also have precise syntax and semantics but they offer a compact
representation and constructs that are closer to the modeled domain, which makes them
easier to understand and use in practice. High-level formalisms can be either based on a
graphical or a textual language or they may even have both representations. Graphical
formalisms (e.g., state charts, Petri nets, data flow networks) are usually based on graphs,
while textual formalisms are similar to programming languages. In my thesis I use symbolic
transition systems (described in Section 2.2.2). Verification algorithms usually translate
high-level models to low-level before addressing the problem (see “state space generation”
in Section 2.4).

2.2.1 Kripke structures

A Kripke structure [26] is a directed graph whose nodes and edges correspond to the states
and transitions of the modeled system respectively. Furthermore, each state is labeled with
a set of propositions that hold on that state.

Definition 2.6 (Kripke structure). A Kripke structure over a set of atomic proposi-
tions A is a tuple M = (S,R,L, I), where

• S is the set of states,
• R ⊆ S × S is the set of transitions,
• L : S ↦→ 2A is the labeling function assigning each state a subset of A,
• I ⊆ S is the nonempty set of initial states.

The structure (S,R, I) obtained by omitting the labeling is often referred to as a transition
system. In my thesis I represent systems using FOL formulas (see Section 2.2.2), hence
atomic propositions are FOL formulas over the variables of the system, e.g., x > y.

2.2. Modeling formalisms 21

A path π is a sequence of states π = (s1, s2, . . .) with (si, si+1) ∈ R for each i ≥ 1. Paths
can be either finite or infinite. A computation tree for a state s0 ∈ S is a tree with states
as nodes and transitions as edges. The root node is s0 and s → s′ is an edge in the tree
if (s, s′) ∈ R. Informally, the computation tree represents all the possible paths starting
from s0.

Example 2.11. Figure 2.1 presents a simple Kripke structure modeling a traffic light.
The model has five states (s1, s2, . . . , s5), each labeled with a subset of A = {red, yellow,
green, off}. The initial state s1 is denoted by a double circle. The normal operation of
the light corresponds to the infinite path πnormal = (s1, s2, s3, s4, . . .). A behavior where
the light turns off is for example the path πoff = (s1, s2, s5, s1).

s1

{red}

s2

{red, yellow}

s3

{green}

s4

{yellow}

s5

{off}

Figure 2.1: Example Kripke structure of a traffic light.

2.2.2 Symbolic transition systems

In my work I represent the models using symbolic transition systems, which offer a compact
way of representing the set of states, transitions and initial states using variables and FOL
formulas.

Definition 2.7 (Symbolic transition system). A Symbolic transition system is a tu-
ple T = (V, Inv,Tran, Init), where

• V = {v1, v2, . . . , vn} is a finite set of variables with domains Dv1 , Dv2 , . . . , Dvn ,
• Inv (invariant) is a FOL formula over V , representing the states along with V ,
• Tran is a FOL formula over V , representing the transition relation,
• Init is a FOL formula over V , representing the initial states.

A state s ∈ Dv1 ×Dv2 × . . .×Dvn is an assignment of the variables. Thus, s can also be
denoted by enumerating the values of the variables, i.e., s = d = (d1, d2, . . . , dn), where
di ∈ Dvi . The models only contain variables and interpreted symbols. Therefore, given a
FOL formula ϕ over the variables V let s |= ϕ denote, that assigning the variables in ϕ

with the values of s evaluates to true. Analogously, let s ̸|= ϕ denote that ϕ evaluates to
false.

A transition system (S,R, I) can be obtained from a symbolic transition system T =
(V, Inv,Tran, Init) in the following way.

2.2. Modeling formalisms 22

• The set of states S is defined by the domains Dv1 , Dv2 , . . . , Dvn and Inv in the
following way: S = {s ∈ Dv1 ×Dv2 × . . .×Dvn | s |= Inv}. Informally, S contains all
possible assignments that satisfy the invariant.

• The set of transitions R is defined by Tran. In the transition formula, variables have
a non-primed (v1, v2, . . . , vn) and a primed (v′

1, v
′
2, . . . , v

′
n) version, corresponding to

the actual and successor states respectively. R is then defined in the following way:
R = {(s, s′) ∈ S × S | (s, s′) |= Tran}. Informally, s′ is a successor of s if assigning
values from s to the non-primed variables and values from s′ to the primed variables
evaluates to true.

• Finally, the set of initial states I is defined by Init in the following way: I = {s ∈
S | s |= Init}. Informally, I is the subset of S for which the initial formula holds.

Example 2.12. The TTMC framework (Chapter 5), in which I work provides a textual
language for describing symbolic transition systems. A simple example can be seen in
Listing 2.1. The system has an integer variable x and a Boolean r, i.e., Dx = Z, Dr = B.
Inv is the conjunction of formulas labeled with the keyword invariant. In this example
an invariant is used to restrict x to values in {1, 2, 3, 4}, but in general, an invariant
can correspond to an arbitrary formula. Init is the conjunction of formulas labeled with
initial. In this example Init assigns a single initial value to each variable, but again, it
can also correspond to an arbitrary formula. Tran is the conjunction of formulas labeled
with transition. It can be seen that Tran defines the relationship between the values of
variables in the actual state (x, r) and the successor state (x′, r′). A formula of the form
if ϕ1 then ϕ2 else ϕ3 is syntactic shortcut for (ϕ1 → ϕ2) ∧ (¬ϕ1 → ϕ3). Finally, a
temporal logic expression (see Section 2.3) is given, which the system must satisfy. The
corresponding transition system can be seen in Figure 2.2, where states are annotated
with the (x, r) values.

Listing 2.1: Example symbolic transition system described in the TTMC framework.
specification System {

property safe : {
local var x : integer
local var r : boolean

invariant x >= 1 and x <= 4

initial x = 1
initial r = false

transition x’ = (
if x < 4 and not r then x + 1
else 1

)

transition (r’ = true and x = 2) or r’ = false
} models G(not r or not x = 2)

}

Since the invariant, the transition and the initial conditions are all FOL formulas, an SMT
solver can be used to evaluate standard queries about the model. Some examples are listed
below.

2.3. Temporal logic 23

• Given a state s ∈ Dv1 ×Dv2 × . . .×Dvn , s ∈ S can be decided by querying s |= Inv
from the solver.
• States s ∈ S can be enumerated by querying for satisfying assignments of Inv.
• Given states s, s′ ∈ S, (s, s′) ∈ R can be decided by querying (s, s′) |= Tran from

the solver.
• Successors s′ of a state s ∈ S can be enumerated by assigning values of s to the

non-primed variables of Tran, asserting Inv for the primed variables and querying
for satisfying assignments.
• Given a state s ∈ Dv1×Dv2×. . .×Dvn , s ∈ I can be decided by querying s |= Init∧Inv

from the solver.
• Furthermore, combining these queries is also possible, e.g., the possible solutions of
s1 ∈ I ∧ s2 ∈ S ∧ s3 ∈ S ∧ (s1, s2) ∈ R ∧ (s2, s3) ∈ R yield paths from initial states
with length three.

Example 2.13. Consider a system with a single variable x and suppose that Inv = (x <
5), Init = (x .= 0) and Tran = (x′ .= x+ 1). Then the expression s1 ∈ I ∧ s2 ∈ S ∧ s3 ∈
S∧(s1, s2) ∈ R∧(s2, s3) ∈ R (i.e., paths from initial states with length three) can be given
to an SMT solver as follows: x1

.= 0∧x1 < 5∧x2 < 5∧x3 < 5∧x2
.= x1 +1∧x3

.= x2 +1.
Only the assignment {x1 ↦→ 0, x2, ↦→ 1, x3 ↦→ 2} satisfies the previous formula, which
corresponds to the path π = (x .= 0, x .= 1, x .= 2).

2,⊤

1,⊤

4,⊤

1,⊥ 2,⊥

3,⊥

3,⊤

4,⊥

Figure 2.2: Transition system corresponding to the symbolic transition system
in Listing 2.1.

2.3 Temporal logic

Propositional and first order logic can express static properties and behaviors of a system.
However, when the state of a system changes over time dynamically, one may also want
to reason about the order of the events. Temporal logic formalisms have the ability to
capture the order of events with a logical time, i.e., without introducing time explicitly.
Temporal logic formalisms are usually divided into two categories based on the structure
of the logical time. Temporal logics with linear time can describe one linear sequence of
events, while branching time temporal logics can describe all possible sequences.

Lamport described a simple linear time and a simple branching time logic in [27] and
investigated their expressive power. He concluded that each logic can express some prop-
erties that the other cannot. Emerson and Halpern revisited this question in [28] and

2.3. Temporal logic 24

proposed a logic called CTL*, which combines linear and branching time logics. The lin-
ear fragment of CTL* is called Linear Temporal Logic (LTL), while the branching part is
called Computation Tree Logic (CTL). In my work, I focus on a specific form of expres-
sions, called safety properties. Safety properties are expressible in CTL*, CTL and LTL
as well. Therefore, I give a short, informal introduction to CTL* (Section 2.3.1), CTL
(Section 2.3.2), LTL (Section 2.3.3) and their expressive power (Section 2.3.4), but I only
formalize safety properties (Section 2.3.5).

2.3.1 CTL*

CTL* is interpreted over a computation tree by extending propositional logic with temporal
operators and path quantifiers [28].

The temporal operators are the following.

• X ϕ is the next state operator, which means that ϕ must hold in the next state of
the path.
• F ϕ is the future (or eventually) operator, which means that ϕ must hold in at least

one state along the path (which can be the first state as well).
• G ϕ is the globally operator, which means that ϕ must hold on every state along the

path.
• ϕ U ψ is the until operator, which means that ψ must hold in a future state along

the path and until then ϕ must hold in every state. It is also valid if ψ holds in the
first state and ϕ never holds.

The path quantifiers are the following.

• A ϕ is the universal quantifier, which means that ϕ must hold for every path starting
from the current state.
• E ϕ is the existential quantifier, which means that ϕ must hold for at least one path

starting from the current state.

ACTL* is the fragment of CTL*, where only the universal quantifier (A) is used and
negations are restricted to atomic formulas. Some algorithms, for example the abstraction
framework defined in Section 4.1 only support ACTL* instead of the full CTL*. Analo-
gously, in ECTL* only the existential quantifier (E) is used and negations are restricted
to atomic formulas.

Example 2.14. Some example requirements for the Kripke structure of the traffic light
(Figure 2.1) are presented below.

• EF green: there is a behavior of the light, where it turns green.
• AF green: the light will always turn green eventually.
• AG ¬(red ∧ green): the light cannot be red and green at the same time.

2.3. Temporal logic 25

• AG [off → AX (red ∨ off)]: if the light is off, then it can only be off or red in the
next state.
• AGF off: the light can always turn off.
• E (red ∧ X off): there is a behavior where the light starts from red but turns off in

the next state.

2.3.2 CTL

CTL is a fragment of CTL* with the following restriction. Valid operators must contain a
single path quantifier followed by a temporal operator. Therefore, there are eight possible
operators (besides the logical operators): AX,AF,AG,AU,EX,EF,EG,EU. The intuitive
meaning of the operators is presented in Figure 2.3. States where ϕ and ψ hold are
colored gray and black respectively.

AX ϕ AF ϕ AG ϕ A [ϕ U ψ]

EX ϕ EF ϕ EG ϕ E [ϕ U ψ]

Figure 2.3: Illustration of CTL operators.

2.3.3 LTL

LTL is the linear time fragment of CTL*, i.e., LTL formulas are interpreted over a single
path in the Kripke structure. Therefore, there are no path quantifiers in LTL. The tem-
poral operators are equivalent to those in CTL*. An illustration of the operators can be
seen in Figure 2.4. States where ϕ and ψ hold are colored gray and black respectively.

X ϕ F ϕ

G ϕ ϕ U ψ

Figure 2.4: Illustration of LTL operators.

An LTL formula ϕ is valid for a Kripke structure M if it holds for all paths starting
from the initial states. This also means that the corresponding CTL* formula of an LTL
formula ϕ is A ϕ.

2.3. Temporal logic 26

2.3.4 Expressive power of temporal logics

The expressive power of CTL and LTL is different due to the structure of the logical time
they are interpreted on. LTL cannot express the possibility of an event (quantifier E), but
only the necessity (quantifier A). On the other hand CTL cannot combine path operators.
CTL* contains both LTL and CTL and also has expressions that are not expressible in
any of them. Figure 2.5 presents some examples for each category.

CTL*

CTL LTL

AG EF p ∧ GF q

AG EF p

X[p ∨ G q]
AG p

AX p

Figure 2.5: Comparison of the expressive power of temporal logics.

2.3.5 Safety properties

In my work I focus on safety properties of the form AG ϕ, where ϕ contains no temporal
operators or path quantifiers. This is usually interpreted as ϕ is “something good” that
must hold for every state along every path. Safety properties can also be thought of in
the form AG ¬ψ, where ψ is “something bad” that must never happen. It is clear that
both representations are equivalent by choosing ψ to be ¬ϕ.

Given a Kripke structure M , a state s ∈ S and a formula ϕ the notation (M, s) |= ϕ means
that ϕ holds in s in M . When M is clear from the context, I also denote (M, s) |= ϕ

simply by s |= ϕ. Suppose, that p ∈ A is an atomic proposition and ϕ1, ϕ2 are propositional
formulas. Then, the relation |= for safety properties is defined recursively as follows:

1. (M, s) |= p iff p ∈ L(s),
2. (M, s) |= ¬ϕ1 iff (M, s) ̸|= ϕ1,
3. (M, s) |= ϕ1 ∧ ϕ2 iff (M, s) |= ϕ1 ∧ (M, s) |= ϕ2,
4. (M, s) |= ϕ1 ∨ ϕ2 iff (M, s) |= ϕ1 ∨ (M, s) |= ϕ2,
5. (M, s) |= ϕ1 → ϕ2 iff (M, s) |= ϕ1 → (M, s) |= ϕ2,
6. (M, s) |= ϕ1 ↔ ϕ2 iff (M, s) |= ϕ1 ↔ (M, s) |= ϕ2,
7. (M, s) |= AG ϕ1 iff (M, si) |= ϕ1 holds for each state si ∈ π of each path π =

(s0, s1, . . .) with s0 = s.

2.4. Model checking 27

2.4 Model checking

Model checking2 is a formal verification technique aiming to automatically determine
whether a (hardware or software) system meets a given requirement by analyzing all
the possible behaviors. Model checking was first described by Clarke and Emerson [30]
and independently by Queille and Sifakis [31]. Formally, the model checking problem is
as follows [29].

Definition 2.8 (Model checking problem). Let M be a Kripke structure (i.e., state-
transition graph). Let ϕ be a formula of temporal logic (i.e., the requirement). Find all
states s of M such that (M, s) |= ϕ.

This means that the purpose of model checking is to find every state s ∈ S, which meets
the requirement, i.e., the behavior of the model starting from s satisfies ϕ. However,
the model checking problem is usually more specific as we are only interested in checking
whether ϕ holds from the initial states, i.e., checking whether (M, s0) |= ϕ for all s0 ∈ I.

Counterexamples. An important feature of safety properties of the form AG ϕ is that
if the formula does not hold, a counterexample can be given, which is a (loop-free) path
leading from an initial state to a state s with (M, s) ̸|= ϕ, i.e., a state violating ϕ. There are
also classes of formulas where counterexamples are loops or even tree-like structures [32].

State space generation. Models are usually given in high-level formalisms instead of
Kripke structures. Since high-level formalisms also have precise syntax and semantics,
these models can be translated into equivalent Kripke structures. This technique is called
state space generation or exploration. However, high-level formalisms offer a compact rep-
resentation of the model. Consequently, the size of the corresponding Kripke structure can
be exponentially large (or even larger) compared to the size of the high-level model. This
problem is referred to as the “state space explosion problem” in the literature. There-
fore, explicitly enumerating and checking all the behaviors (or even states) of a high-level
model is impossible in practice. Over the past decades, several types of advanced model
checking algorithms were developed to overcome the state space explosion problem. Chap-
ter 3 presents some of these techniques. For more details on model checking, the reader is
referred to [33].

Example 2.15. Consider a symbolic transition system T = (V, Inv,Tran, Init), with

• V = {v1, v2, . . . , vn} and Dvi = N for 1 ≤ i ≤ n,
• Inv =

⋀n
i=1(vi ≤ k),

• Tran =
⋀n
i=1(v′

i
.= vi + 1) ∨ (v′

i
.= vi),

2Clarke pointed out an interesting fact in [29]. Many people think that the term “model” in “model
checking” refers to the formal representation of the system under verification. However, it originally
intended to mean that the formula (corresponding to the requirement) holds for the Kripke structure (of
the system), i.e., the Kripke structure is a model of the formula.

2.4. Model checking 28

• Init =
⋀n
i=1(vi

.= 1).

For a given n and k, the symbolic transition system is described by n variables and 4n
atoms. However, due to the domains and the invariant, the corresponding transition
system (S,R, I) has |S| = kn states. The transition relation describes that each variable
at each state stays the same or increments. This yields |R| to be approximately |S| · 2n.
It is only an approximation since if vi = k, then it cannot be incremented.

29

Chapter 3

Related work

This chapter briefly summarizes the related work in the field of model checking. Section 3.1
presents some model checking techniques in general, while Section 3.2 focuses on CEGAR-
based approaches and related techniques, which are also the main topic of my thesis.

3.1 Model checking approaches

This section first introduces explicit techniques in model checking along with their com-
plexity (Section 3.1.1). However, explicit techniques are usually limited by the state space
explosion problem. Therefore, the rest of the section briefly describes some of the ad-
vanced model checking approaches that were developed in the past decades, including
partial order reduction (Section 3.1.2), symbolic methods (Section 3.1.3), bounded model
checking (Section 3.1.4) and abstraction-based techniques (Section 3.1.5).

3.1.1 Explicit model checking

The most straightforward way to decide the model checking problem is to enumerate all
states and paths from the initial states and check whether they satisfy the formula. Such
techniques are called explicit methods.

Due to the restricted operators, CTL model checking can be performed by only analyzing
the states of the Kripke structure instead of the paths [30]. At first, each state is labeled
with the atomic propositions that hold on that state. Then, states are labeled with
subformulas that hold on that state iteratively, until a fixpoint is reached. The complexity
of the algorithm is thus, O(|S| · |ϕ|), where |S| is the number of states in the Kripke
structure M and |ϕ| is the size of the requirement [34].

LTL model checking in contrast, is a computationally harder problem since paths of the
Kripke structure have to be checked. This is often done by transforming the model checking
problem into the emptiness checking of Büchi automata [35]. The complexity of the

3.1. Model checking approaches 30

approach is 2O(|ϕ|)O(|S|) [34]. The algorithms for LTL can be easily adopted to CTL*,
hence the complexity of CTL* model checking is equivalent to LTL [34].

For safety properties of the form AG ϕ, model checking reduces to reachability analysis,
i.e., checking if a state s with (M, s) ̸|= ϕ can be reached from an initial state through
transitions. This can be done in O(|S| · |ϕ|) complexity, using for example depth-first
search to traverse S and check ϕ at each state. The problem however, is still state space
explosion: the Kripke structure can be exponentially large compared to the high-level
model.

3.1.2 Partial order reduction

State space explosion is often caused by the interleaving semantics of concurrent systems,
since the local executions can interleave in many possible global orderings. However, the
requirement ϕ is often insensitive to the ordering of some executions, e.g., between two
synchronization points. Partial order reduction methods [36,37] exploit this symmetry to
reduce the size of the state space by partitioning the executions into equivalence classes.
Each execution in the same equivalence class either satisfies or contradicts ϕ. Therefore,
it is sufficient to choose only a single representative execution from each equivalence class,
which yields a smaller state space.

3.1.3 Symbolic model checking

Symbolic model checking techniques [38] try to exploit regularities and symmetries in the
model in order to have a more compact representation of the state space. States of the
system are encoded by ⌈log2 |S|⌉ Boolean variables. A set of states (e.g., initial states)
X ⊆ S is represented by a Boolean function fX : S ↦→ {⊤,⊥}, where fX(s) = ⊤ if s ∈ X
and fx(s) = ⊥ if s /∈ X. A set of state pairs (e.g., transition relation) can be represented
with Boolean functions similarly. For example, if a system is represented by two Boolean
variables x and y, and the set of reachable states is {(0, 1), (1, 0), (1, 1)}, then this explicit
list can be represented by the Boolean function x ∨ y in a compact way. Furthermore,
Boolean functions can be efficiently encoded and manipulated using reduced ordered binary
decision diagrams (ROBDDs) [39] or other types of decision diagrams.

3.1.4 Bounded model checking

Bounded model checking (BMC) techniques [40] exploit the fact that in many cases it
is not necessary to explore the full state space in order to verify the requirement. For
example, consider a safety property AG ϕ, i.e., checking whether a state can be reached
where ϕ does not hold. If such state can be found within a few steps, the rest of the
state space does not have to be explored. Bounded model checking considers a k-bounded
part of the state space, i.e., states that can be reached in k steps from an initial state.

3.1. Model checking approaches 31

However, it is not sure that the truth of an expression can be evaluated using a bound k.
For example, if AG ϕ is true for a given k, it may fail for a k′ > k if a state violating ϕ can
be reached in k′ steps. Therefore, model checking has to be repeated, but with a larger
k. On the other hand, for example if AG ¬ϕ holds for a bound k, then it also holds for
k′ > k. Bounded model checking can be efficiently transformed into a SAT problem [8].
The process is illustrated in Figure 3.1.

k := 0 Verify model
with bound k

Is result valid for
the full state space?

k := k′ (k′ > k)

StopModel,
requirement

Yes

No

Figure 3.1: Bounded model checking process.

3.1.5 Abstraction-based model checking

Abstraction is a general mathematical approach, which is widely used to solve hard prob-
lems. It is also an important technique in model checking, where abstraction means to
remove or simplify some details that are believed to be irrelevant for the requirement.
Consequently, verifying the abstract model is computationally easier than the original
one. However, the loss of information may lead to wrong results. Abstraction-based tech-
niques are usually one-sided, which means that they accept either false negatives or false
positives, but not both. Therefore, abstraction-based techniques are usually categorized
by the way they control the information loss.

• Over-approximation techniques [41] relax constraints in the model, which extends the
set of possible behaviors. Hence, if an ACTL* requirement ϕ holds in the abstract
model, then it also holds for all behaviors of the original one. However, the new
behaviors may introduce false negatives, i.e., counterexamples violating ϕ that are
not present in the original model (Figure 3.2(a)). For ECTL* requirements ψ the
opposite holds: if the abstract model violates ψ, then no behavior of the original
model can be found that satisfies ψ. However, the new behaviors may introduce
false positives, i.e., behaviors satisfying ψ that are only present in the abstract
model (Figure 3.2(b)).

• Under-approximation [42] techniques remove behaviors from the model. Thus, if a
behavior of the abstract model violates the ACTL* requirement ϕ, then it is also
a counterexample in the original model. However, false positives may occur if the
ϕ holds in the abstract model, but a behavior that is only present in the original
model violates it (Figure 3.3(a)). For ECTL* requirements ψ the opposite holds: if
a behavior satisfying ψ is present in the abstract model, then it is also included in
the original one. However, reducing the set of behaviors may yield false negatives,
i.e., a behavior satisfying ψ is lost in the abstract model (Figure 3.3(b)).

3.2. CEGAR-based model checking 32

Note that the size of the rectangles in Figure 3.2 do not correlate with the complexity of
model checking. Even though the abstract model over-approximates the behaviors of the
original one, its representation of the state space can be smaller.

Abstract

Original
X

X
X
X

X

X

X

X ×
X

X X

X

(a) False negative for ACTL*.

Abstract

Original
×
×××

×
×

×
× X

×××
×

(b) False positive for ECTL*.

Figure 3.2: Illustration of over-approximation.

Original

Abstract
X

X
X
X

X

X

X

X ×
X

X X

X

(a) False positive for ACTL*.

Original

Abstract
×
×××

×
×

×
× X

×××
×

(b) False negative for ECTL*.

Figure 3.3: Illustration of under-approximation.

There are also techniques (e.g., abstract interpretation [43] or 3-valued logics [44]) that
provide precise answers both in the positive and negative case, but may leave the problem
undecided for some instances.

The main challenge in abstraction-based model checking is to find the right level of ab-
straction, which is coarse enough to avoid state space explosion but still fine enough to
prove (or disprove) the desired requirement. Counterexample-Guided Abstraction Refine-
ment (CEGAR) [45] is an automatic method for finding the proper level of abstraction.
CEGAR-based approaches first start with a coarse abstraction and apply refinement based
on counterexamples until the requirement is proved or disproved. My thesis also focuses
on over-approximation techniques and CEGAR.

3.2 CEGAR-based model checking

CEGAR is a general concept that is widely used in formal verification. The work of
Clarke et al. [45] (and its extended version [46]) was not the first verification method
using counterexample-based abstraction refinement, however this approach is considered

3.2. CEGAR-based model checking 33

as the basis of the currently used CEGAR algorithms. This section briefly summarizes
results in the field of CEGAR and related techniques. I describe some abstraction sub-
types (Section 3.2.1), modeling formalisms (Section 3.2.2) and the most important related
techniques that can be combined with CEGAR (Section 3.2.3). Finally, I present some of
the tools that implement the CEGAR approaches and related concepts (Section 3.2.4).

3.2.1 Abstraction types

CEGAR can work with different types of abstractions. Predicate abstraction and parti-
tioning variables into visible and invisible sets are widely used abstraction schemes, but
there are other methods for the approximation of the state space.

Predicate abstraction. In predicate abstraction [46–49], states of the model are not
tracked explicitly, but only their evaluation on a set of predicates P. A predicate can
either be satisfied or contradicted, therefore the abstract model has 2|P| states. Concrete
states are mapped to abstract states based on the predicates they satisfy. For example, if
P = {x > y, y

.= 2}, the concrete state (x .= 3, y .= 1) belongs to the abstract state where
x > y holds, but y .= 2 does not. If the abstraction is too coarse, refinement is done by
extending the set of predicates. New predicates are usually obtained by distinguishing the
false negative from the other behaviors.

Visibility-based abstraction. Another widespread abstraction scheme is to partition
the variables of the system into two sets: visible and invisible variables [50–52]. Invisible
variables are considered to be irrelevant in verifying the system and thus, are abstracted
out. Therefore, the state space of the abstract model is only defined by the visible variables.
Usually, visible variables are those that appear in the requirement. If the abstraction is
too coarse, refinement is obtained by making some of the previously invisible variables
visible. New variables are usually those that can distinguish the false negative from the
other behaviors.

Other methods. There are also other methods where abstraction amounts to the over-
approximation of (reachable) states with interpolants [53] or inductive invariants [54].
Inductive invariants are similar to the induction concept in mathematical proofs. A for-
mula ϕ is an inductive invariant if (1) it holds for the initial states (s0 |= ϕ for each
s0 ∈ I) and (2) if it holds for a state, it also holds for its successors (s |= ϕ⇒ s′ |= ϕ for
each s′ with (s, s′) ∈ R). However, induction in one step is usually too strict. Therefore,
k-induction is often used, which is the generalization of induction from one step to paths
of length k. If the requirement cannot be verified on the over-approximated model, the
interpolant or the inductive invariant is refined.

3.2. CEGAR-based model checking 34

3.2.2 Modeling formalisms

Clarke et al. originally described CEGAR for hardware model checking, where the models
are usually transition systems or Kripke structures [46, 50]. Since then, CEGAR has
been successfully applied in software model checking, i.e., to the verification of programs
[48,49,51,55]. Programs are described by a control flow automaton (CFA), which consists
of program locations and control flow edges. Locations describe the actual state of the
program counter, while edges describe the operations executed on variables when control
flows from one location to another. A state of the program is thus, defined by the location
and the evaluation of the variables. Beyer and Löwe [51] achieve abstraction by making
some variables invisible at each location. Ermis et al. [48] and Leucker et al. [49] use
predicate abstraction over the variables: initially each location is assigned with a “true”
predicate, which is then refined based on counterexamples. The abstraction of McMillan
[55] lies in the partial unwinding of the control flow graph.

CEGAR can also be applied to the verification of hybrid systems [56]. Hybrid systems
combine discrete and continuous state variables. Models usually have an infinite state
space, where the behavior is defined by differential equations in each discrete state. In
order to be able to perform model checking, a finite abstraction is produced and refined
using CEGAR.

In my former work I was developing a CEGAR-based algorithm for the reachability analysis
of Petri nets [57]. Petri nets are graphical models for describing and analyzing parallel,
asynchronous and distributed systems. The behavior of a Petri net is determined by the set
of reachable states. The so-called state equation of Petri nets is a set of linear inequalities
that over-approximate reachable states. Hence, it can be used as an abstraction. The
power of state equation lies in the fact that it is only based on the static structure of the
Petri net. However, false negatives can occur that are eliminated by extending the state
equation with additional linear inequalities.

Gmeiner et al. [58] used CEGAR for the parameterized verification of fault-tolerant dis-
tributed algorithms. Given a concrete value k, a distributed algorithm can be verified for
k participants using traditional model checking approaches. Parameterized verification
means to check the algorithm for all values of k at once, which requires abstraction due to
the large (or infinite) number of possible values for k. Gmeiner et al. proposed a method
where the potentially infinite number of participants are divided into a finite number of
intervals, based on guards in the algorithm.

3.2.3 Combining with other techniques

CEGAR can work with different types of model checkers to verify the abstract model. The
only requirement is that the model checker should be able to give a counterexample if the
result is negative. Clarke et al. used both symbolic [46] and SAT-based [50] algorithms.
However, explicit methods can also be used when the abstraction is coarse [51].

3.2. CEGAR-based model checking 35

There are also other techniques that can improve the efficiency of CEGAR-based algo-
rithms. Lazy abstraction is an approach that refines only a subset of the abstract state
space. It was first described by Henzinger et al. [59] for the verification of programs. In
their approach, the state space is constructed on-the-fly and the newly introduced predi-
cate is only considered in the unexplored part of the state space (and also a subset of the
explored part, due to loops). Ermis et al. [48] achieve lazy abstraction by only refining
program locations with the newly introduced predicate that are part of the counterexam-
ple. Beyer and Löwe [51] use invisible variables, where lazy abstraction means to make
variables visible only at program locations appearing in the counterexample. Furthermore,
a different set of variables can be made visible at different program locations.

Slicing is a technique introduced by Weiser to reduce a program to a minimal form that
still produces the same behavior for a given slicing criterion [60]. It was first used in
debugging, testing and maintenance to extract the relevant parts of a program. Since
then, slicing was also introduced in model checking as a preprocessing step to reduce the
state space. Brückner et al. [61] define different types of slicing operations to eliminate
or simplify abstract states and transitions in the abstract state space of their CEGAR
approach.

Interpolation is often used to infer new predicates that refine the abstraction. Heinzinger
et al. [62] and Brückner et al. [61] use Craig interpolation to refine a single state that causes
the false negative. In contrast, Beyer et al. [51], Ermis et al. [48] and McMillan [55] use
sequence interpolation to refine multiple states along the counterexample. Furthermore,
Beyer et al. [63] recently proposed a technique that considers multiple prefixes of the
counterexample to generate alternative refinements. Consequently, refinements can be
ordered according to some metric (e.g., coarseness) and the “best” one can be selected.

New predicates can also be obtained by unsat cores. The unsat core of an unsatisfiable
CNF formula is a subset of clauses that are already unsatisfiable. Leucker et al. [49] encode
the counterexample into an unsatisfiable formula and use minimal unsat cores to eliminate
clauses that have no impact on the counterexample being a false negative. The advantage
of their approach is that it can yield smaller predicates than interpolation and it can also
be used if the underlying SMT solver does not support interpolation.

CEGAR can also be combined with induction. A major drawback of k-induction is that the
second condition (the induction part) is usually too general because it also corresponds to
paths that cannot be reached. Beyer et al. [54] use a CEGAR-based algorithm in parallel
with k-induction to explore an abstract state space and to strengthen the invariants.

3.2.4 Tools

There are several existing tools that implement CEGAR algorithms along with the related
techniques. Clarke et al. implemented their approaches [46,50] in the NuSMV tool, which
is the state-of-the-art reimplementation of the symbolic model checker SMV [64]. Beyer

3.2. CEGAR-based model checking 36

et al. [51, 63] presented their work within the CPAChecker framework, which is a tool
for configurable software verification. The tool of Ermis et al. [48] is called ULTIMATE
and is implemented as a chain of Eclipse plug-ins. The lazy abstraction concept was first
introduced in the BLAST tool of Henzinger et al. [59]. The SLAB tool of Brücker et
al. [61] also utilizes the slicing technique besides lazy abstraction.

37

Chapter 4

Counterexample-Guided
Abstraction Refinement

This chapter presents CEGAR, the main topic of my work. CEGAR aims to solve a
main challenge in abstraction-based model checking, namely finding the proper level of
abstraction. It is a general concept that can work with different subtypes of abstraction.
First, I describe a generic CEGAR framework for existential abstraction (Section 4.1),
in which the presented algorithms fit. Then I present two approaches that are mainly
based on existing algorithms from the literature: clustered CEGAR (Section 4.2) and
visibility-based CEGAR (Section 4.3). In Section 4.4 I propose a new algorithm, called
the interpolating CEGAR, which is a combination of the clustered and visibility-based
approaches and the related techniques (presented in Section 3.2). Finally, in Section 4.5, I
summarize the common and different aspects of the three CEGAR approaches presented
in this chapter and I also emphasize my contributions.

4.1 A generic CEGAR framework

In this section I describe a generic framework for existential abstraction based on [46].
First, I introduce abstraction functions and their important properties (Section 4.1.1),
then I present the main steps of a generic CEGAR approach (Section 4.1.2).

4.1.1 Existential abstraction

Existential abstraction simplifies the model by systematically relaxing constraints [41].
This yields an over-approximation in the possible behaviors: the abstract model keeps all
behaviors of the original one, but may add new ones. Existential abstraction is usually
achieved by partitioning the concrete states into disjoint groups, each group being an
abstract state [46].

4.1. A generic CEGAR framework 38

Definition 4.1 (Abstraction function). Given a Kripke structure M = (S,R,L, I),
abstraction is a function h : S ↦→ Ŝ, where Ŝ denotes the set of abstract states. An
abstract state ŝ ∈ Ŝ abstracts a concrete state s ∈ S if h(s) = ŝ.

Abstraction can also be viewed as an equivalence relation (denoted by≡h) over the concrete
states S, with the abstract states being the equivalence classes. Thus, for two concrete
states s1, s2 ∈ S, h(s1) = h(s2) can also be denoted by s1 ≡h s2 or (s1, s2) ∈ ≡h . In the
opposite direction, h−1 is defined in the following way.

Definition 4.2 (Concretization function). Given an abstraction function h : S ↦→ Ŝ,
the concretization function h−1 : Ŝ ↦→ 2S , is given by h−1(ŝ) = {s ∈ S | h(s) = ŝ} for
each abstract state ŝ ∈ Ŝ.

In other words, the concretization of an abstract state ŝ ∈ Ŝ is the set of concrete
states that are mapped to ŝ. The abstract Kripke structure generated by h is as fol-
lows.

Definition 4.3 (Abstract Kripke structure). Given a (concrete) Kripke structure
M = (S,R,L, I) and an abstraction function h : S ↦→ Ŝ, the abstract Kripke structure
M̂ = (Ŝ, R̂, L̂, Î) is defined in the following way.

• (ŝ, ŝ′) ∈ R̂ iff ∃(s, s′) ∈ R with h(s) = ŝ and h(s′) = ŝ′,
• ŝ ∈ Î iff ∃s ∈ I with h(s) = ŝ,
• L̂(ŝ) =

⋃
s∈h−1(ŝ) L(s).

Informally, the set of abstract states is created by mapping multiple concrete states to
single abstract states. A transition exists between two abstract states if there is at least
one transition between the abstracted concrete states. An abstract state is initial if it
abstracts at least one concrete initial state. The labels of an abstract state are obtained
by taking the union of the labels of the abstracted concrete states.

To distinguish between concrete and abstract states, I denote them in figures with circles
and rectangles respectively. Furthermore, when both abstract and concrete states are
present in a figure, I denote h(s) = ŝ by drawing s inside ŝ.

Example 4.1 (from [46]). Consider the concrete Kripke structure in Figure 4.1(a).
Suppose that the states are grouped by h into three abstract states as indicated by the
dashed lines. The corresponding abstract Kripke structure can be seen in Figure 4.1(b).
The states are mapped in the following way:

• h(s0) = h(s1) = ŝ0,
• h(s2) = h(s3) = h(s4) = ŝ1,
• h(s5) = h(s6) = ŝ2.

The transitions are mapped in the following way:

4.1. A generic CEGAR framework 39

• (s0, s1) ∈ R ↦→ (ŝ0, ŝ0) ∈ R̂,
• (s0, s2) ∈ R ↦→ (ŝ0, ŝ1) ∈ R̂,
• (s1, s2) ∈ R ↦→ (ŝ0, ŝ1) ∈ R̂,
• (s3, s4) ∈ R ↦→ (ŝ1, ŝ1) ∈ R̂,
• (s4, s6) ∈ R ↦→ (ŝ1, ŝ2) ∈ R̂,
• (s5, s2) ∈ R ↦→ (ŝ2, ŝ1) ∈ R̂.

Furthermore, only ŝ0 ∈ Î, since I = {s0} and h(s0) = ŝ0.

s0

s1

s2

s3 s4

s5

s6

(a) Concrete Kripke structure.

ŝ0 ŝ1 ŝ2

(b) Abstract Kripke structure.

Figure 4.1: Existential abstraction example.

In general, there are |Ŝ||S| possible mappings h from S to Ŝ. However, in order to be able
to reason about a temporal logic formula on the abstract model, h must follow some rules.

Definition 4.4 (Appropriateness). An abstraction function h is appropriate for an
ACTL* formula ϕ if for all atomic subformulas ϕ0 of ϕ and for all states s1, s2 ∈ S with
s1 ≡h s2 it holds that s1 |= ϕ0 ⇔ s2 |= ϕ0.

Informally, h is appropriate for ϕ if concrete states within the same abstract state cannot
be distinguished by atomic subformulas of ϕ.

Theorem 1 (from [46]). If h is appropriate for the formula ϕ and M is labeled with
the atomic propositions in ϕ, then M̂ |= ϕ⇒M |= ϕ.

Theorem 1 ensures that if the abstraction function is appropriate, then no false positives
are accepted, i.e., the abstraction is an over-approximation. On the other hand, false
negatives may occur using existential abstraction. Even though the abstract model violates
the requirement, the concrete one may still satisfy it. In my work I focus on safety
properties of the form AG ϕ, for which counterexamples are loop-free paths. The definition
of h−1 can be extended to abstract paths in the following way.

Definition 4.5 (Path concretization). Given an abstract path π̂ = (ŝ1, ŝ2, . . . , ŝn)
with ŝ1 ∈ Î, concrete paths corresponding to π̂ are the following [46].

h−1(π̂) =

⎧⎨⎩(s1, s2, . . . , sn)

⏐⏐⏐⏐⏐⏐ s1 ∈ I ∧
⋀

1≤i≤n
h(si) = ŝi ∧

⋀
1≤i<n

(si, si+1) ∈ R

⎫⎬⎭
The path π̂ is said to be concretizable if h−1(π̂) ̸= ∅.

Informally, the set h−1(π̂) contains concrete paths where the first state is an initial state
and the ith concrete state is mapped to the ith abstract state.

4.1. A generic CEGAR framework 40

Example 4.2 (from [46]). Recall the example in Figure 4.1 and suppose that s5 and
s6 should not be reached because something “bad” happens there. In the abstract model
therefore, the abstract state ŝ2 should not be reached. An (abstract) counterexample is
thus the path π̂ = (ŝ0, ŝ1, ŝ2). It is easy to see however, that π̂ is not concretizable.
Whichever concrete path is followed from the initial state, it is stuck at s2, which is
therefore, called a dead-end state. On the other hand s4 is the state that has an outgoing
edge to a state in ŝ2, making the model checker believe that ŝ2 can be reached. Thus,
s4 is called a bad state. The state s3 is neither dead-end, nor bad, therefore it is called
irrelevant.

Abstraction refinement

When an abstract counterexample has no corresponding concrete counterexample, it is
called spurious. Spurious counterexamples are caused by the coarseness of the abstraction
and can be eliminated by refinement [46].

Definition 4.6 (Refinement). An abstraction function h ′ : S ↦→ Ŝ′ is a refinement of
h : S ↦→ Ŝ if ≡h ′⊂≡h holds. In other words, h ′(s1) = h ′(s2) ⇒ h(s1) = h(s2) for all
s1, s2 ∈ S and there exists s3, s4 ∈ S for which h(s3) = h(s4) but h ′(s3) ̸= h ′(s4).

Informally, h ′ is a refinement of h if equivalent states in h ′ are also equivalent in h . However,
some states that were equivalent in h are no longer equivalent in h ′, which means that
some abstract states of h are split into multiple abstract states in h ′.

Example 4.3. The spurious counterexample in Example 4.2 can be eliminated by sep-
arating the dead-end and bad states in ŝ1. One possible refinement h ′ is illustrated in
Figure 4.2(a) with the corresponding abstract Kripke structure in Figure 4.2(b). It is easy
to see that ŝ2 can no longer be reached, thus the spurious counterexample is eliminated.

s0

s1

s2

s3 s4

s5

s6

(a) Concrete Kripke structure.

ŝ0

ŝ1a

ŝ2

ŝ1b

(b) Abstract Kripke structure.

Figure 4.2: Abstraction refinement example.

Example 4.4. The abstraction h ′′ in Figure 4.3 also eliminates the spurious counterex-
ample, but it is not a refinement of h (Figure 4.1). For example, h ′′(s4) = h ′′(s6) but
h(s4) ̸= h(s6).

In the previous examples abstraction was defined by explicitly mapping each concrete state
to an abstract state. This requires the enumeration of all concrete states, which can lead

4.1. A generic CEGAR framework 41

s0

s1

s2

s3 s4

s5

s6

(a) Concrete Kripke structure.

ŝ0

ŝ1 ŝ2

ŝ3

(b) Abstract Kripke structure.

Figure 4.3: Abstraction eliminating the counterexample, but not being a re-
finement.

to state space explosion. To tackle this problem, the concrete state space is usually given
in an implicit, high-level representation and abstraction is also defined implicitly [46, 50].
Hence, the abstract state space can be constructed without enumerating the concrete
states and transitions explicitly. In my work I define abstractions implicitly on symbolic
transition systems, similarly to Clarke et al. [46] (see Section 4.2.1, Section 4.3.1 and
Section 4.4.1).

4.1.2 The CEGAR loop

The previous section concluded that existential abstraction admits no false positives and
when a false negative (spurious counterexample) occurs, it can be eliminated by refining
the abstraction. However, it is possible that multiple refinements are required to eliminate
all spurious counterexamples. Algorithms therefore, usually start with a coarse abstrac-
tion to keep the state space small and refine the abstraction iteratively until the proper
level is reached, which is fine enough to prove or disprove the given requirement. This
approach is called Counterexample-Guided Abstraction Refinement [46]. The main steps
are illustrated in Figure 4.4 and explained below.

1 Create initial
abstraction

2 Check the
abstract model

3 Concretize
counterexample

4 Refine
abstraction

Stop

Model,
requirement

Abstract model

Requirement holds

Abstract
counterexample

Concrete
counterexample

Spurious
counterexampleRefined model

Figure 4.4: Generic CEGAR process.

1. The input of the algorithm is the concrete model (usually in a high-level representa-

4.2. Clustered CEGAR 42

tion) and the requirement (e.g., a temporal formula). The first step is to create an
initial, usually coarse abstract model.

2. The abstract model is then checked by a model checking algorithm. The CEGAR
approach can be combined with any type of model checker as long as it is capable
of providing a counterexample. Due to over-approximation, if the abstract model
satisfies the requirement, then it also holds in the concrete model.

3. On the other hand, if the abstract model violates the requirement, an abstract
counterexample is produced by the model checker. The third step1 is to find a
concrete counterexample corresponding to the abstract one. This is usually done
by exploring the subset of the concrete state space that corresponds to the abstract
counterexample. If a concrete counterexample exists, it is a witness that the original
model also violates the requirement.

4. If the abstract counterexample is found to be spurious, the abstraction has to be
refined and the process has to be repeated from Step 2, until either the requirement
holds for the abstract model or a concrete counterexample is found.

If the original model has a finite number of states, then the initial equivalence relation ≡h0

corresponding to the initial abstraction h0 is also finite. In the ith refinement iteration
≡hi+1⊂≡hi

holds, thus a finite k must exist where ≡hk
= ∅. Then, refinement is no longer

possible and the algorithm terminates. Informally, ≡hk
= ∅ corresponds to an abstraction,

where each concrete state belongs to a different abstract state, i.e., no spurious behavior
is possible.

The main advantage of the CEGAR approach is therefore, that it is fully automatic. The
user of the algorithm only needs to give the concrete model and the requirement. The
disadvantage is that CEGAR-based methods usually use heuristics for the refinement,
hence they may not produce an abstraction as coarse as algorithms that are guided with
the help of the user (who has domain specific knowledge).

4.2 Clustered CEGAR

Clustered CEGAR is mainly based on the work of Clarke et al. [46]. The key idea of the
approach is to group the variables of the model into clusters based on dependencies between
them. Initial abstraction is then calculated separately for the clusters using composite
abstraction functions and predicate abstraction (Section 4.2.1). The abstract model is
checked by taking the product of the clusters on-the-fly (Section 4.2.2). An abstract
counterexample is concretized by unfolding a part of the concrete model (Section 4.2.3).
Refinement is achieved by splitting abstract states based on dead-end and bad states
(Section 4.2.4).

1This step is sometimes called “examination” instead of “concretization” in the literature.

4.2. Clustered CEGAR 43

4.2.1 Initial abstraction

Given a symbolic transition system T with a finite set of variables V = {v1, v2, . . . , vn}
with domains Dv1 , Dv2 , . . . , Dvn and a requirement ϕ, the concrete Kripke structure M =
(S,R,L, I) can be built in the following way. The set of states S, the transition relation R
and the initial states I can be built as described in Section 2.2.2. Let atoms(T) be the set
of atomic formulas that appear in the conditions2 of the transitions or in the requirement.
Then the labeling L : S ↦→ 2atoms(T) is given by L(s) = {ϕ0 ∈ atoms(T) | s |= ϕ0}, i.e.,
states are labeled with the atomic formulas that hold for them.

Composite abstraction functions. As argued in [46], it is usually computationally
too expensive to calculate abstraction directly (i.e., building M̂ directly from M) because
M can be large. However, the state space S of the system is a (subset of the) product
D = Dv1×Dv2×. . .×Dvn . It is therefore, a considerable idea to define abstraction functions
hi : Dvi ↦→ D̂vi separately for each domain. Consequently, given a state d = (d1, d2, . . . , dn),
h(d) is equal to (h1(d1), h2(d2), . . . , hn(dn)) and Ŝ equals to D̂v1×D̂v2×. . .×D̂vn . Such h is
called a composite abstraction function. However, the full power of abstraction cannot be
exploited by defining abstraction separately for each domain and more spurious behavior
can occur due to the dependencies between variables [46].

Example 4.5 (from [46]). Let D = {0, 1, 2}× {0, 1, 2} and D̂ = {0, 1}× {0, 1}. There
are 49 = 262 144 possible mappings h : D ↦→ D̂. However, there are only 23 = 8 mappings
from {0, 1, 2} to {0, 1}, therefore 8 · 8 = 64 mappings from D to D̂ if h = (h1, h2).

Clarke et al. therefore, proposed a different approach [46]. Suppose that the system
T has n variables V = {v1, v2, . . . , vn}. The set V is partitioned into variable clusters
VC 1,VC 2, . . . ,VCm with VC 1 ∪ VC 2 ∪ . . . ∪ VCm = V and VC i ∩ VC j = ∅ for 1 ≤
i < j ≤ m. Each cluster VC i has the domain DVC i =

∏
v∈VC i

Dv, thus D = DVC1 ×
DVC2 × . . . × DVCm . Let var(ϕ) denote the variables appearing in the formula ϕ, e.g.,
var(x < y + 4) = {x, y}. The equivalence relation ≡V clustering V is defined in the
following way. Given two variables v1, v2 ∈ V ,

v1 ≡V v2 iff ∃ϕ ∈ atoms(T) with v1, v2 ∈ var(ϕ).

Informally, two variables belong to the same cluster if they appear together in an atomic
formula. Variable clusters can be calculated using the disjoint-set data structure [65].
Initially each variable belongs to a different cluster. Then each formula ϕ ∈ atoms(T) is
checked and the clusters of the variables that appear in ϕ are joined.

Each variable cluster VC i has an associated formula cluster FC i = {ϕ ∈ atoms(T) |
var(ϕ) ⊆ VC i}, i.e., formulas that contain variables of the cluster. The component
hi : DVC i ↦→ D̂VC i of the composite abstraction function h(h1, h2, . . . , hm) is defined on the

2The condition in the formula if ϕ1 then ϕ2 else ϕ3 is ϕ1.

4.2. Clustered CEGAR 44

domain DVC i in the following way, where (d1, d2, . . . , dk), (e1, e2, . . . , ek) ∈
∏
v∈VC i

Dv [46].

(d1, d2, . . . , dk) ≡hi
(e1, e2, . . . , ek) iff

⋀
ϕ∈FC i

(d1, d2, . . . , dk) |= ϕ⇔ (e1, e2, . . . , ek) |= ϕ

Informally, this means that two states of the variable cluster are in the same equivalence
class (i.e., abstract state) if they cannot be distinguished by the atomic formulas appear-
ing in the formula cluster. Defining the abstraction function this way naturally ensures
appropriateness since the atomic formulas contain the atoms of the requirement.

Since S = DVC1 × DVC2 × . . . × DVCm , a concrete state s can also be denoted by its
components s = (d1, d2, . . . , dm), where di ∈ DVC i . The abstraction of s is then defined by
h(s) = (h1(d1), h2(d2), . . . , hm(dm)). The abstract state space is given by the composition
of the clusters, i.e., Ŝ = D̂VC1 × D̂VC2 × . . . × D̂VCm . Thus, an abstract state ŝ ∈ Ŝ can
also be denoted by its components: ŝ = (ŝ1, ŝ2, . . . , ŝm), where ŝi ∈ D̂VC i .

Example 4.6 (from [46]). Consider the system T in Listing 4.1. The system has three
variables V = {x, y, reset} with Dx = Dy = {0, 1, 2} and Dreset = {0, 1}. The set of
atomic formulas is atoms(T) = {(reset .= 1), (x < y), (x .= y), (y .= 2)}. Therefore, there
are two variable clusters VC 1 = {x, y} and VC 2 = {reset} with two formula clusters
FC 1 = {(x < y), (x .= y), (y .= 2)} and FC 2 = {(reset .= 1)}. Consider the variable
cluster VC 1. There are |Dx| · |Dy| = 3 · 3 states in DVC1, which are represented by the
cells in Table 4.1.

Each cell contains the atomic formulas that hold for that state. It can be seen that
for example (0, 0) and (1, 1) can belong to the same equivalence class because the same
formulas (only x .= y) hold for them. The domain DVC1 is partitioned into the following
five equivalence classes (i.e., abstract states):

• ŝ1
0 : (0, 0) ≡h1 (1, 1),

• ŝ1
1 : (1, 0) ≡h1 (2, 0) ≡h1 (2, 1),

• ŝ1
2 : (0, 1),

• ŝ1
3 : (0, 2) ≡h1 (1, 2),

• ŝ1
4 : (2, 2).

It can be shown similarly that the variable cluster VC 2 has two abstract states: ŝ2
0 corre-

sponding to reset .= 0, ŝ2
1 corresponding to reset .= 1, and ŝ2

1 is labeled with (reset .= 1).
The abstraction function h = (h1, h2) is thus defined by h1 : {0, 1, 2}2 ↦→ {ŝ1

0, ŝ
1
1, ŝ

1
2, ŝ

1
3, ŝ

1
4}

and h2 : {0, 1} ↦→ {ŝ2
0, ŝ

2
1}, with h1(0, 0) = h1(1, 1) = ŝ1

0, h1(1, 0) = h1(2, 0) = h1(2, 1) =
ŝ1

1, h1(0, 1) = ŝ1
2, h1(0, 2) = h1(1, 2) = ŝ1

3, h1(2, 2) = ŝ1
4, h2(0) = ŝ2

0 and h2(1) = ŝ2
1. The

abstract state space (i.e., the composition of the clusters) has the following 5·2 = 10 states:
(ŝ1

0, ŝ
2
0), (ŝ1

1, ŝ
2
0), (ŝ1

2, ŝ
2
0), (ŝ1

3, ŝ
2
0), (ŝ1

4, ŝ
2
0), (ŝ1

0, ŝ
2
1), (ŝ1

1, ŝ
2
1), (ŝ1

2, ŝ
2
1), (ŝ1

3, ŝ
2
1), (ŝ1

4, ŝ
2
1).

Predicate abstraction. The example above shows that the abstract states and labeling
can be constructed by enumerating and grouping the concrete states into abstract states.

4.2. Clustered CEGAR 45

Listing 4.1: Example symbolic transition system described in the TTMC framework.
specification System {

property safe : {
local var reset : integer
local var x : integer
local var y : integer

invariant 0 <= reset and reset <= 1
invariant 0 <= x and x <= 2
invariant 0 <= y and y <= 2

initial reset = 0
initial x = 0
initial y = 1

transition reset’ >= 0 and reset’ <= 1

transition x’ = (
if reset = 1 then 0
else if x < y then x + 1
else if x = y then 0
else x

)

transition y’ = (
if reset = 1 then 0
else if x = y and not y = 2 then y + 1
else if x = y then 0
else y

)
} models G(x<y or reset=1)

}

Table 4.1: Example labeling of a cluster.

x
.= 0 x

.= 1 x
.= 2

y
.= 0 (x .= y)

y
.= 1 (x < y) (x .= y)

y
.= 2 (x < y), (y .= 2) (x < y), (y .= 2) (x .= y), (y .= 2)

However, if a variable cluster contains many variables with large (or infinite) domains,
this can be computationally expensive (or impossible).

Therefore, I adopt a different strategy, namely predicate abstraction [47] that only enu-
merates the abstract states. The idea behind predicate abstraction is that each abstract
state either satisfies or contradicts an atomic formula, thus given k formulas there are
2k possible abstract states. These can be enumerated using a tree where nodes contain
formulas. The root node is empty and each node has two successors by extending the
list with the next formula and its negation. Formally, let FC j = {ϕ1, ϕ2, . . . , ϕk} be the
atomic formulas of the jth cluster. Consequently, the tree has k + 1 levels. The root
node N1 = ∅ is an empty list of formulas and the node Ni at level i has two successors:
N1
i+1 = Ni ∪ {ϕi} and N2

i+1 = Ni ∪ {¬ϕi}. Each leaf node N i
k+1 on the level k + 1 is

a possible abstract state (of the cluster). However, it has to be checked with an SMT
solver that the formulas do not contradict each other and the invariant Inv. If a node is
contradicting, it can be removed from the state space similarly to slicing [61]. This check
can be done at inner nodes as well and if an inner node is already contradicting then the

4.2. Clustered CEGAR 46

subtree under that node does not need to be calculated. The ideas above are formulated
in Algorithm 1.

Algorithm 1: Enumerate abstract states with labels for a cluster.
Input : FC j = {ϕ1, ϕ2, . . . , ϕk}: atomic formulas for the cluster VC j

Output : D̂VC j : set of abstract states for the cluster VC j with labels
1 D̂VC j ← ∅;
2 N1 ← ∅;
3 Q← {N1};
4 while Q is not empty do
5 Ni ← remove element from Q;
6 if i = k + 1 then
7 Let ŝ be a new abstract state with L̂(ŝ) = Ni;
8 D̂VC j ← D̂VC j ∪ {ŝ};
9 else

10 N1
i+1 ← Ni ∪ {ϕi};

11 if Inv ∧
⋀
ϕ∈N1

i+1
ϕ is satisfiable then Q← Q ∪ {N1

i+1};
12 N2

i+1 ← Ni ∪ {¬ϕi};
13 if Inv ∧

⋀
ϕ∈N2

i+1
ϕ is satisfiable then Q← Q ∪ {N2

i+1};
14 end
15 end
16 return D̂VC j ;

Example 4.7. Consider the system T in Listing 4.1 and the variable cluster VC 1 =
{x, y} with the formula cluster FC 1 = {(x < y), (x .= y), (y .= 2)}. The tree can be seen
in Figure 4.5. Nodes colored gray are contradicting, so the same five abstract states are
obtained as in Example 4.6. The node N1

3 is already contradicting since (x < y)∧(x .= y)
cannot hold and thus, N1

4 and N2
4 are contradicting as well. The node N7

4 is contradicting
because ¬(x .= y) ∧ ¬(x < y) implies that (x > y), and (x > y) ∧ (y .= 2) implies that
(x > 2), but Dx = {0, 1, 2}.

∅
(x < y) ¬(x < y)

(x < y)
(x .= y)N1

3
(x < y)
¬(x .= y)

¬(x < y)
(x .= y)

¬(x < y)
¬(x .= y)

(x < y)
(x .= y)
(y .= 2)
N1

4

(x < y)
(x .= y)
¬(y .= 2)
N2

4

(x < y)
¬(x .= y)

(y .= 2)

(x < y)
¬(x .= y)
¬(y .= 2)

¬(x < y)
(x .= y)
(y .= 2)

¬(x < y)
(x .= y)
¬(y .= 2)

¬(x < y)
¬(x .= y)

(y .= 2)
N7

4

¬(x < y)
¬(x .= y)
¬(y .= 2)

Figure 4.5: Example on enumerating only the abstract states.

The abstract states Ŝ and labeling L̂ can thus, be calculated without enumerating concrete
states. Since the labels of an abstract state ŝ ∈ Ŝ are FOL formulas, s ∈ h−1(ŝ) can be
decided using an SMT solver by checking if s |=

⋀
l∈L̂(ŝ) l. Therefore, the abstract transition

4.2. Clustered CEGAR 47

relation R̂ and initial states Î can also be computed without enumerating concrete states
with an SMT solver, using queries presented in Section 2.2.2 and the ones below.

• (ŝ, ŝ′) ∈ R̂ iff ∃s, s′. (s, s′) ∈ R ∧ s ∈ h−1(ŝ) ∧ s′ ∈ h−1(ŝ′) is satisfiable.
• ŝ ∈ Î iff ∃s. s ∈ I ∧ s ∈ h−1(ŝ) is satisfiable.

Clarke et al. represent the abstract Kripke structures symbolically using BDDs [46]. In my
approach I represent them explicitly, but for optimization purposes, I do not construct the
full abstract Kripke structure M̂ = (Ŝ, R̂, L̂, Î). Instead, I construct a Kripke structure
M̂i = (Ŝi, R̂i, L̂i, Îi) for each cluster VC i. Given that h(s) = (ŝ1, ŝ2, . . . , ŝi, . . . , ŝm), let
h(s)i denote the ith component ŝi. Then M̂i is defined as follows:

• Ŝi = D̂VC i , i.e., abstract states are the elements of the abstract domain,
• ŝi ∈ Îi if ∃s ∈ I with h(s)i = ŝi, i.e., an initial state exists whose ith component is

mapped to ŝi,
• (ŝi1, ŝi2) ∈ R̂i if ∃(s1, s2) ∈ R with h(s1)i = ŝi1 and h(s2)i = ŝi2, i.e., a concrete

transition from s1 to s2 exists whose ith components are mapped to ŝi1 and ŝi2.

The full abstract Kripke structure M̂ is constructed on-the-fly by the model checker as it
explores the abstract state space.

Example 4.8. Consider the system in Example 4.6 with VC 1 = {x, y} and VC 2 =
{reset}. Recall, that VC 1 and VC 2 had 5 and 2 states respectively. Furthermore, h is
a composite abstraction function (h1, h2). The abstract Kripke structures can be seen in
Figure 4.6. The abstract states are those defined in Example 4.6. The initial state of
the original model is (0, 1, 0) and h(0, 1, 0) = (h1(0, 1), h2(0)) = (ŝ1

2, ŝ
2
0). Therefore ŝ1

2
is initial in M̂1 and ŝ2

0 is initial in M̂2. The transition from (1, 2, 1) to (0, 0, 0) in the
original model is mapped in the following way: h(1, 2, 1) = (h1(1, 2), h2(1)) = (ŝ1

3, ŝ
2
1) and

h(0, 0, 0) = (h1(0, 0), h2(0)) = (ŝ1
0, ŝ

2
0). Therefore, there is a transition between ŝ1

3 and ŝ1
0

in M̂1 and between ŝ2
1 and ŝ2

0 in M̂2. The other transitions are mapped similarly.

ŝ1
1

ŝ1
0

ŝ1
4

ŝ1
3

ŝ1
2

(a) Kripke structure M̂1 for VC 1 = {x, y}.

ŝ2
0

ŝ2
1

(b) Kripke structure M̂2 for VC 2 = {reset}.

Figure 4.6: Abstract Kripke structures corresponding to the clusters.

4.2. Clustered CEGAR 48

4.2.2 Model checking

For safety properties of the form AG ϕ, model checking amounts to exploring the set of
reachable (abstract) states and checking whether every state satisfies ϕ. Clarke et al. use a
symbolic (BDD-based) representation and therefore, symbolic model checking algorithms
[46]. In my approach I construct the abstract Kripke structure from its components on-the-
fly and use explicit model checking. A sketch of the algorithm can be seen in Algorithm 2.
The input of the algorithm is a symbolic transition system T , a list of Kripke structures
M̂1, M̂2, . . . , M̂m corresponding to the clusters and a requirement AG ϕ. The output is
either an abstract counterexample (in the form of a path) or a positive answer. The set
of already explored states is denoted by E, which is initially empty. I loop through each
state in the product of the initial states and check whether it is not explored yet and
also if it is an initial state in the full Kripke structure M̂ . This check has to be done
since Î ⊆ Î1 × Î2 × . . . × Îm. For example, consider a system with two variables x, y
belonging to different clusters and suppose that the initial states are (x .= 0, y .= 1) and
(x .= 1, y .= 0). In the cluster of x, states that abstract x .= 0 and x

.= 1 are initial and
similarly for the cluster of y. Thus, a product state abstracting (x .= 0, y .= 0) is included
in Î1 × Î2 × . . .× Îm, but not included in Î.

From each abstract initial state a depth-first search is started using a stack Q. At each
iteration the last element ŝ of Q is removed and checked whether ŝ ̸|= ϕ. If ŝ ̸|= ϕ

holds, then the actual path π̂ = (ŝ0, . . . , ŝ) is returned as a counterexample. Otherwise
all successors of ŝ are pushed onto the stack. A check (ŝ, ŝ′) ∈ R̂ is necessary like in the
case of initial states, since R̂ ⊆ R̂1 × R̂2 × . . .× R̂m. Finally, if no state was reached that
violates the requirement, a positive answer is returned. In such cases it can be concluded
by Theorem 1 that the concrete Kripke structure M also satisfies AG ϕ.

Example 4.9. Consider the system T in Listing 4.1 with the requirement AG (x <

y ∨ reset .= 1). As mentioned in Example 4.6, there are two clusters with 2 and 5
states. Hence, the abstract state space has 2 · 5 = 10 states labeled with atoms(T) (or
their negations). It can be checked, that an abstract path π̂ = (ŝ0, ŝ1, ŝ2) exists with the
following labels:

• L̂(ŝ0) = {¬(reset .= 1), (x < y),¬(x .= y),¬(y .= 2)},
• L̂(ŝ1) = { (reset .= 1),¬(x < y), (x .= y),¬(y .= 2)},
• L̂(ŝ2) = {¬(reset .= 1),¬(x < y), (x .= y),¬(y .= 2)}.

Consequently, π̂ is an abstract counterexample since ŝ0 ∈ Î and ŝ2 ̸|= (x < y∨ reset .= 1).

4.2.3 Concretizing the counterexample

The abstract counterexample for safety properties (AG ϕ) is a path π̂ = (ŝ1, ŝ2 . . . , ŝn)
of abstract states with ŝ1 ∈ Î and ŝn ̸|= ϕ. The abstraction function h is appropriate,

4.2. Clustered CEGAR 49

Algorithm 2: Construct and check abstract state space (clustered CEGAR).
Input : T : Symbolic transition system

M̂1, . . . , M̂m: Kripke structures of the clusters
AG ϕ: requirement

Output : “Requirement holds” or an abstract counterexample
1 E ← ∅;
2 foreach ŝ0 ∈ Î1 × . . .× Îm do
3 if ¬(ŝ0 ∈ Î) ∨ ŝ0 ∈ E then continue;
4 Q← {ŝ0};
5 while Q ̸= ∅ do
6 ŝ← pop(Q);
7 if ŝ /∈ E then
8 E ← E ∪ {ŝ};
9 if ŝ ̸|= ϕ then return actual path (ŝ0, . . . , ŝ);

10 foreach ŝ′ with (ŝ, ŝ′) ∈ R̂1 × . . .× R̂m do
11 if (ŝ, ŝ′) ∈ R̂ then push(Q, ŝ′);
12 end
13 end
14 end
15 end
16 return “Requirement holds”

which means that if an abstract state ŝn violates ϕ, then all concrete states in h−1(ŝn)
also violate ϕ. Therefore, it is clear that if h−1(π̂) ̸= ∅ (i.e., π̂ is a concretizable path)
then a concrete counterexample exists. It can be queried from an SMT solver whether
h−1(π̂) ̸= ∅. However, if h−1(π̂) = ∅, then it is important to know the longest prefix of
the abstract counterexample, for which a concrete path exists. The following approach is
proposed in [50]. Let ϕk be defined for 1 ≤ k ≤ n over s1, s2, . . . , sn in the following way.

ϕk = s1 ∈ I ∧
⋀

1≤i≤k
h(si) = ŝi ∧

⋀
1≤i<k

(si, si+1) ∈ R

It is easy to see that the set of solutions to ϕn equals to h−1(π̂). Therefore, if ϕn is
satisfiable then a concrete counterexample exists. This approach is similar to the unfolding
technique used in bounded model checking [40], but here, unfolding is restricted by the
abstract states. If ϕn is not satisfiable, let 1 ≤ f < n be the largest index for which ϕf

is satisfiable, i.e., the longest prefix of the abstract counterexample that is concretizable.
Then ŝf is called the failure state, which provides useful information for the abstraction
refinement.

Example 4.10. Consider the counterexample π̂ = (ŝ1, ŝ2, ŝ3, ŝ4) in Figure 4.7. The
concrete transition relation R is indicated by the arrows. Then the solution(s) of

• ϕ1 are {(s1), (s3)},
• ϕ2 are {(s1, s4), (s1, s5), (s3, s6)},

4.2. Clustered CEGAR 50

• ϕ3 are {(s1, s4, s7), (s1, s5, s7)},
• ϕ4 is ∅.

Hence, π̂ is spurious and the failure state is ŝ3.

ŝ1 ŝ2 ŝ3 ŝ4

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

Figure 4.7: Spurious counterexample.

4.2.4 Abstraction refinement

When a counterexample π̂ has no corresponding concrete counterexample, the abstraction
has to be refined in order to eliminate the spurious behavior. Example 4.2 and Example 4.3
already presented the rough idea behind abstraction refinement: concrete states (in the
failure state) are classified as dead-end, bad or irrelevant. The purpose of refinement is to
separate dead-end and bad states.

Definition 4.7 (Dead-end, bad, irrelevant state). Given a spurious counterexam-
ple π̂ = (ŝ0, ŝ1, . . . , ŝn), the formal definition of dead-end (SD), bad (SB) and irrelevant
(SI) states are the following [46,50]:

SD =

⎧⎨⎩sf
⏐⏐⏐⏐⏐⏐∃(s1, s2, . . . , sf) : s1 ∈ I ∧

⋀
1≤i≤f

h(si) = ŝi ∧
⋀

1≤i<f
(si, si+1) ∈ R

⎫⎬⎭ ,

SB =
{
s ∈ h−1(ŝf)

⏐⏐⏐∃s′ ∈ h−1(ŝf+1) : (s, s′) ∈ R
}
,

SI = h−1(ŝf) \ (SD ∪ SB),

where f is the index of the failure state.

In other words, SD denotes states in h−1(ŝf) that are reachable from initial states, SB
denotes states in h−1(ŝf) that have at least one successor in h−1(ŝf+1) and SI denotes
all the other states in h−1(ŝf). It is obvious that SD ∩ SB = ∅, otherwise ŝf would not
be a failure state. The counterexample is spurious due to the transition (ŝf , ŝf+1) ∈ R̂
introduced by the bad states SB.

Example 4.11. Consider the counterexample in Figure 4.7 where the failure state is ŝ3.
The concrete states are classified as following.

• s7 is a dead-end state since it is reachable from an initial state, but no state in
h−1(ŝ4) is a successor of s7.

4.2. Clustered CEGAR 51

• s9 is a bad state since it is not reachable from an initial state, but it has successors
(s10 and s12) in h−1(ŝ4).
• s8 is irrelevant because it is neither dead-end nor bad.

Recall that the abstraction function h = (h1, h2, . . . , hm) is a composite abstraction func-
tion, where m is the number of clusters. The failure state ŝf = (ŝ1

f , ŝ
2
f . . . , ŝ

m
f) is a

composition of states from each cluster, where each state ŝif is an equivalence class of
≡hi

. Therefore h cannot be refined directly, but only by refining its components hi [46].
Formally, a composite abstraction function ≡′

h is a refinement of ≡h if for each compo-
nent ≡′

hi
⊆≡hi

holds (1 ≤ i ≤ m), but at least one component exists, where ≡′
hj
⊂≡hj

(1 ≤ j ≤ m). This means that some concrete states will no longer be equivalent, yielding
new abstract states. The cost of the refinement is the number of new abstract states. The
goal is to keep the abstraction as coarse as possible, i.e., minimizing the number of new
states.

Example 4.12 (from [46]). Suppose that there are two clusters and the failure state ŝf
corresponds to (ŝ1

f , ŝ
2
f) with ŝ1

f abstracting the concrete components d3, d4, d5 (of the first
cluster) and ŝ2

f abstracting d7, d8, d9 (from the second cluster). In Figure 4.8 dead-end
states are gray, bad states are black and irrelevant states are white. Figure 4.8(a) shows
a refinement (indicated by the dashed lines) where ŝ1

f is partitioned into two and ŝ2
f into

three new equivalence classes. It can be seen, that dead-end and bad states are successfully
separated in the resulting 2 · 3 = 6 states. However, as Figure 4.8(b) illustrates, if d3

is already separated from d4 and d5, then the separation of d7 and d9 is unnecessary.
Consequently, a coarser refinement producing only 2 · 2 new states can also be obtained.

ŝf

d7

d8

d9

ŝ2
f

d3 d4 d5

ŝ1
f

(a) Refinement with 2 · 3 new equivalence classes.

ŝf

d7

d9

d8

ŝ2
f

d3 d4 d5

ŝ1
f

(b) Coarser refinement with 2 · 2 new equivalence
classes.

Figure 4.8: Example on a fine and a coarse refinement.

Keeping the abstraction as coarse as possible is important to handle the state space ex-
plosion problem. However, finding the coarsest refinement is an NP-hard problem [46].
Clarke et al. proposed a heuristic called “PolyRefine”, which has polynomial complexity
and furthermore, if SI = ∅ then it can produce the coarsest refinement [46].

Recall that S = DVC1 ×DVC2 × . . .×DVCm and a concrete state is defined by an m-tuple
(d1, d2, . . . , dm). Given a set X ⊆ S, an index 1 ≤ j ≤ m and a value a ∈ DVC j the

4.3. Visibility-based CEGAR 52

projection function proj(X, j, a) [46] is given by

proj(X, j, a) = {(d1, . . . , dj−1, dj+1, . . . , dm) | (d1, . . . , dj−1, a, dj+1, . . . , dm) ∈ X}.

Informally proj(X, j, a) is the set of elements in X where the jth component is a but with
a removed.

Given a failure state ŝf and the set of dead-end states SD, the heuristic “PolyRefine” can
be seen in Algorithm 3.

Algorithm 3: PolyRefine.
Input : ŝf : failure state

SD: dead-end states
(h1, h2, . . . , hm): abstraction functions

Output : (h ′
1, h ′

2, . . . , h ′
m): refined abstraction functions

1 for 1 ≤ j ≤ m do
2 ≡′

hj
←≡hj

;
3 for every pair m1,m2 ∈ ŝjf do
4 if proj(SD, j,m1) ̸= proj(SD, j,m2) then ≡′

hj
←≡′

hj
\{(m1,m2)};

5 end
6 end

The algorithm loops through each component hj of the abstraction function. Initially
the refined equivalence relation ≡′

hj
is the same as ≡hj

. Then, the algorithm checks each
pair of concrete states in the jth abstract component ŝjf of the failure state. If their
projection on the dead-end states is different, the two states can no longer belong to the
same equivalence class.

Example 4.13. Recall the failure state ŝf in Example 4.12. First ŝ1
f is checked, where

proj(SD, 1, d3) = {d8}, proj(SD, 1, d4) = {d9} and proj(SD, 1, d5) = {d9}. Thus, (d3, d4)
and (d3, d5) are removed from ≡h1, i.e., d3 is separated from d4 and d5. Then ŝ2

f is
checked, where proj(SD, 2, d7) = ∅, proj(SD, 2, d8) = {d3} and proj(SD, 2, d9) = {d4, d5}.
Therefore, all three states are separated, yielding the (non-coarsest) refinement of Fig-
ure 4.8(a).

4.3 Visibility-based CEGAR

The visibility-based CEGAR is mainly based on the work of Clarke et al. [50]. The key
idea of the approach is to partition variables into a visible and an invisible set. Initial
abstraction amounts to determining the visible variables (Section 4.3.1). The abstract
model is constructed and checked on-the-fly only taking the visible variables into consid-
eration (Section 4.3.2). An abstract counterexample is concretized in the same way as
in the clustered approach (Section 4.3.3). Refinement is achieved by making some of the
previously invisible variables visible (Section 4.3.4).

4.3. Visibility-based CEGAR 53

4.3.1 Initial abstraction

Given a symbolic transition system T with a finite set of variables V = {v1, v2, . . . , vn}
with domains Dv1 , Dv2 , . . . , Dvn and a requirement ϕ, the concrete Kripke structure M =
(S,L,R, I) can be built in the following way. Building S,R and I is presented in Sec-
tion 2.2.2. Let atoms(ϕ) be the set of atomic formulas that appear in the requirement ϕ.
Then the labeling L : S ↦→ 2atoms(ϕ) is given by L(s) = {ϕ0 ∈ atoms(ϕ) | s |= ϕ0}, i.e.,
states are labeled with the atomic formulas that hold for them.

The set of variables V is partitioned into two sets: visible variables, denoted by VV and
invisible variables, denoted by VI . Formally, V = VV ∪ VI and VV ∩ VI = ∅. Intuitively,
visible variables are believed to play an important role in verifying the requirement, while
invisible variables are not of interest. Without the loss of generality, in the following it is
assumed that visible variables are always represented by the first k indices (1 ≤ k ≤ n),
i.e., VV = {v1, v2, . . . , vk} and VI = {vk+1, . . . , vn}. The abstraction function h : S ↦→ Ŝ is
defined in the following way, where (d1, d2, . . . , dn), (e1, e2, . . . , en) ∈ S [50]:

(d1, d2, . . . , dn) ≡h (e1, e2, . . . , en) iff
k⋀
i=1

di
.= ei.

Informally, this means that two concrete states are in the same equivalence class (i.e.,
abstract state) if they have the same value on the visible variables. The set of abstract
states is thus Ŝ = {(d1, d2, . . . , dk) ∈ Dv1 ×Dv2 × . . .×Dvk

| ∃dk+1, dk+2, . . . , dn ∈ Dvk+1 ×
Dvk+2 × . . .×Dvn : (d1, d2, . . . , dn) ∈ S}, i.e., assignments to the visible variables from all
states.

Initially, let VV =
⋃
ϕ0∈atoms(ϕ) var(ϕ0) and VI = V \ VV , i.e., variables appearing in the

atomic subformulas of the requirement are visible [50]. This ensures appropriateness of
h , since states s1, s2 with s1 ≡h s2 have the same values for variables appearing in the
requirement and thus, have the same truth value for each atomic subformula ϕ0 of ϕ, i.e.,
s1 |= ϕ0 ⇔ s2 |= ϕ0 holds. This technique is also referred to as explicit-value analysis [51].

The abstract states Ŝ can be calculated by enumerating all the possible evaluations of the
visible variables VV . The abstract labeling L̂ is defined as usual, i.e., taking the union of
the labels of the concrete states. The abstract transition relation R̂ and initial states Î can
be computed using an SMT solver as described for the clustered approach (Section 4.2.1).
For optimization purposes however, the abstract Kripke structure is not built explicitly.
Instead, it is constructed on-the-fly by the model checker as it explores the abstract state
space.

Example 4.14. Consider a system with variables x, y, z and domains Dx = Dy = Dz =
{0, 1}, having the concrete state space presented in Figure 4.9(a). Let the requirement
be ϕ = AG (x ̸ .= 1). The only visible variable is therefore, x. The partitioning of states
is presented in Figure 4.9(a), while the abstract state space can be seen in Figure 4.9(b).
The abstract state ŝ0 corresponds to states with x .= 0 and ŝ1 to states with x .= 1.

4.3. Visibility-based CEGAR 54

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(a) Concrete state space.

ŝ0 ŝ1

(b) Abstract state space.

Figure 4.9: Abstraction example based on visible and invisible variables.

4.3.2 Model checking

As in the clustered approach, model checking of safety properties (AG ϕ) amounts to
exploring the reachable states and checking whether every state satisfies ϕ. Clarke et al.
use a symbolic model checker [50] for this purpose. In my approach I construct the abstract
Kripke structure on-the-fy and use explicit model checking. A sketch of the algorithm can
be seen in Algorithm 4. The input of the algorithm is a symbolic transition system T ,
a set of visible variables VV and a requirement AG ϕ. The output is either an abstract
counterexample or a positive answer. The set of already explored states is denoted by
E, which is initially empty. I loop through each state in the set of abstract initial states
Î. The set Î can be enumerated on-the-fly by an SMT solver like the set of all abstract
states Ŝ, but with an extra assertion that these states also have to satisfy Init. From each
abstract initial state a depth-first search is started using a stack Q. At each iteration the
last element ŝ of Q is removed and checked whether ŝ ̸|= ϕ. If ŝ ̸|= ϕ holds, then the actual
path is returned as a counterexample. Otherwise all successors of ŝ are pushed onto the
stack. Finally, if no state was reached that violates the requirement, a positive answer
is returned. In such cases it can be concluded by Theorem 1 that the concrete Kripke
structure also satisfies AG ϕ.

4.3.3 Concretizing the counterexample

The abstract counterexample can be concretized (unfolded) in the same way as in the
clustered approach (Section 4.2.3). If no corresponding concrete counterexample can be
found, the failure state provides useful information for abstraction refinement.

Example 4.15. Consider the system in Example 4.14 and Figure 4.9. The abstract path
π̂ = (ŝ0, ŝ1) is a counterexample for the property AG (x ̸ .= 1). However, starting from the
only concrete initial state (0, 0, 0) in ŝ0, there is no concrete transition to ŝ1. Therefore
ŝ0 is the failure state, (0, 0, 0) is a dead-end state, (0, 1, 0) and (0, 1, 1) are bad states and
(0, 0, 1) is irrelevant.

4.3. Visibility-based CEGAR 55

Algorithm 4: Construct and check abstract state space (visibility-based CEGAR).
Input : T : Symbolic transition system

VV : visible variables
AG ϕ: requirement

Output : “Requirement holds” or an abstract counterexample
1 E ← ∅;
2 foreach ŝ0 ∈ Î do
3 if ŝ0 ∈ E then continue;
4 Q← {ŝ0};
5 while Q ̸= ∅ do
6 ŝ← pop(Q);
7 if ŝ /∈ E then
8 E ← E ∪ {ŝ};
9 if ŝ ̸|= ϕ then return actual path (ŝ0, . . . , ŝ);

10 foreach ŝ′ with (ŝ, ŝ′) ∈ R̂ do push(Q, ŝ′);
11 end
12 end
13 end
14 return “Requirement holds”

4.3.4 Abstraction refinement

As in the clustered approach, the purpose of abstraction refinement is to separate the
dead-end and bad states. In this case however, separation can be achieved by making a
subset V ′

I ⊆ VI of the previously invisible variables visible. Then, refining the abstraction
means to move elements of V ′

I from VI to VV , i.e., VV ← VV ∪V ′
I and VI ← VI \V ′

I . Clarke
et al. proposed heuristics based on integer linear programming and decision tree learning
for determining V ′

I [50]. In my work, I adopt a different strategy: I generate a formula I

that separates dead-end and bad states using Craig interpolation. Then I simply choose
V ′
I = var(I), i.e., I make variables appearing in the interpolant visible.

Dead-end and bad states can be described as in the clustered approach (Definition 4.7):

SD =

⎧⎨⎩sf
⏐⏐⏐⏐⏐⏐∃π = (s1, s2, . . . , sf) : s1 ∈ I ∧

⋀
1≤i≤f

h(si) = ŝi ∧
⋀

1≤i<f
(si, si+1) ∈ R

⎫⎬⎭ ,

SB =
{
s ∈ h−1(ŝf)

⏐⏐⏐∃s′ ∈ h−1(ŝf+1) : (s, s′) ∈ R
}
.

For interpolation, let α and β be defined over s1, s2, . . . , sn in the following way.

α = s1 ∈ I ∧
⋀

1≤i≤f
h(si) = ŝi ∧

⋀
1≤i<f

(si, si+1) ∈ R

β = h(sf+1) = ŝf+1 ∧ (sf , sf+1) ∈ R

The formula α describes paths leading to dead-end states in h−1(ŝf), while β describes
bad states. Since π̂ is a spurious counterexample, α ∧ β is unsatisfiable. Therefore, a

4.4. Interpolating CEGAR 56

Craig interpolant I can be calculated. The important properties of the interpolant are
the following:

• α⇒ I , i.e., I describes dead-end states using less information than α,
• I ∧ β is unsatisfiable, i.e., bad states cannot satisfy I ,
• I uses only common symbols in α and β, which are only variables of sf .

Example 4.16. Recall Example 4.15 with Figure 4.9. The failure state is ŝ0, thus α =
(s0 ∈ I ∧ h(s0) = ŝ0) and β = (h(s1) = ŝ1 ∧ (s0, s1) ∈ R). The formula I = (y0

.= 0)
is an interpolant, since α ⇒ I , I ∧ β is unsatisfiable and the variable y0 corresponds
to the common symbol s0. Therefore, var(I) = {y}, and VV = {x, y} and VI = {z}
after the refinement. The refined partitioning and the abstract state space can be seen
in Figure 4.10, where the spurious behavior is now eliminated. Note, that I ′ = (y0

.=
0∧z0

.= 0) is also an interpolant, but it would make both y and z visible, yielding a larger
abstract state space. The algorithm thus, relies heavily on how “simple” interpolants the
solvers can generate.

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(a) Concrete state space.

ŝ00

ŝ01

ŝ10

ŝ11

(b) Abstract state space.

Figure 4.10: Abstraction refinement by making the variable y visible.

4.4 Interpolating CEGAR

The interpolating CEGAR algorithm can be regarded as a combination of the previous
approaches along with some advanced techniques. It builds the initial abstraction based
on explicitly tracked variables and an arbitrary set of initial predicates (Section 4.4.1).
Model checking is performed on an explicitly constructed model (Section 4.4.2) with an
incremental optimization (Section 4.4.5). An abstract counterexample is concretized sim-
ilarly to the previous approaches, but with some additional checks (Section 4.4.3). The
key of the algorithm is the refinement (Section 4.4.4), which is achieved by extending the
set of predicates using Craig or sequence interpolation. Lazy abstraction is also utilized,
i.e., only a subset of the abstract states is refined by the new predicates.

4.4. Interpolating CEGAR 57

4.4.1 Initial abstraction

Given a symbolic transition system T with a finite set of variables V = {v1, v2, . . . , vn} with
domains Dv1 , Dv2 , . . . , Dvn and a requirement ϕ, let P be a set of arbitrary, quantifier-free
FOL predicates over V and let VE ⊆ V be the set of explicitly tracked variables. Without
the loss of generality, in the following it is assumed that explicitly tracked variables are
represented by the first k indices (1 ≤ k ≤ n), i.e., VE = {v1, v2, . . . , vk}. The Kripke
structure M = (S,L,R, I) can be constructed as described in Section 2.2.2 with the
labeling function L : S ↦→ 2P given by L(s) = {ϕ ∈ P |s |= ϕ}∪{¬ϕ|ϕ ∈ P∧s ̸|= ϕ}. Note,
that states are explicitly labeled with the negations of predicates that they do not satisfy.
The motivation behind this is explained later in this section. The abstraction function
h : S ↦→ Ŝ is defined in the following way, where (d1, d2, . . . , dn), (e1, e2, . . . , en) ∈ S:

(d1, d2, . . . , dn) ≡h (e1, e2, . . . , en) iff
⋀
ϕ∈P

[(d1, d2, . . . , dn) |= ϕ⇔ (e1, e2, . . . , en) |= ϕ]

∧
k⋀
i=1

di
.= ei.

Informally, this means that two states are mapped to the same abstract state if they cannot
be distinguished by the predicates in P and they have the same values for the explicitly
tracked variables. The abstract labeling function was defined as L̂(ŝ) =

⋃
s∈h−1(ŝ) L(s) in

the generic framework (Section 4.1), i.e., the union of the labels of concrete states. In
the interpolating CEGAR approach however, abstract states also carry information about
the values of explicitly tracked variables VE . Therefore, L̂ also associates abstract states
with labels of the form (vi

.= di) for each vi ∈ VE , where di ∈ Dvi is the value of vi in
the abstract state. For example, if VE = {x} and Dx = {0, 1, 2}, abstract states are also
labeled with x

.= 0, x .= 1 or x .= 2 besides the predicates.

The rationale behind combining predicates and explicitly tracked variables is that both
approaches have different advantages and disadvantages. For example, a variable with an
infinite domain cannot be tracked explicitly. On the other hand, a variable with a small
domain (e.g., the program counter) may yield many predicates in many steps. In such
cases it is more efficient to keep track of the variable explicitly.

The initial abstract Kripke structure M̂ = (Ŝ, R̂, L̂, Î) can be built without explicitly
calculating M in the following way. If explicitly tracked variables are ignored, the abstract
states and labeling can be calculated using predicate abstraction in the same way as one
cluster in the clustered CEGAR approach (Section 4.2.1). Therefore, let Ŝ0 and L̂0 denote
the set of abstract states and labels produced by Algorithm 1 with the set of predicates
P. Then Algorithm 5 creates Ŝ and L̂ by extending Ŝ0 and L̂0 with the explicitly tracked
variables. Algorithm 5 loops through the abstract states in Ŝ0 and for each state ŝ0 it
loops through all possible evaluations of the explicitly tracked variables. A new state ŝ
is created by appending the concrete values to ŝ0 and the labels are also updated. If the
labels are not contradicting, the state is added to Ŝ.

4.4. Interpolating CEGAR 58

Algorithm 5: Construct initial abstract states and labeling (interpolating CEGAR).
Input : Ŝ0: abstract states from predicates P

L̂0: abstract labeling over predicates P
VE : explicitly tracked variables

Output : Ŝ: abstract states and labeling with explicitly tracked variables
1 Ŝ ← ∅;
2 L̂← L̂0;
3 foreach ŝ0 ∈ Ŝ0 do
4 foreach (d1, d2, . . . , dk) ∈ Dv1 ×Dv2 × . . .×Dvk

do
5 ŝ← (ŝ0, d1, . . . , dk);
6 L̂(ŝ)← L̂0(ŝ) ∪ {(v1

.= d1)} ∪ {(v2
.= d2)} ∪ . . . ∪ {(vk

.= dk)};
7 if Inv ∧

⋀
l∈L̂(ŝ) l is satisfiable then Ŝ ← Ŝ ∪ {ŝ};

8 end
9 end

10 return Ŝ

Example 4.17. Suppose, that variables are V = {x, y} with domains Dx = Dy = {0, 1},
the only predicate is P = {(x < y)} and the only explicitly tracked variable is VE = {x}.
Considering only the predicates, there are two abstract states ŝ, t̂ ∈ Ŝ0 with L̂0(ŝ) =
{(x < y)} and L̂0(t̂) = {¬(x < y)}. By considering the concrete values of x there are
thus, 2 · |Dx| = 4 abstract states:

• ŝ0 with L̂(ŝ0) = { (x < y), (x .= 0)},
• ŝ1 with L̂(ŝ1) = { (x < y), (x .= 1)},
• t̂0 with L̂(t̂0) = {¬(x < y), (x .= 0)},
• t̂1 with L̂(t̂1) = {¬(x < y), (x .= 1)}.

However, labels of ŝ1 cannot be satisfied, since (x < y) ∧ (x .= 1) ⇒ (1 < y), but
Dy = {0, 1}.

The abstract transition relation R̂ and initial states Î can be calculated with an SMT
solver similarly to the clustered algorithm. In this approach however, I construct the full
abstract Kripke structure M̂ since I expect only a few predicates and explicitly tracked
variables with small domains. This is motivated by the fact that usually in software model
checking, the only explicitly tracked variable is the program counter and the initial set of
predicates is empty [48].

Labeling revisited

Given an ACTL* formula ϕ to be checked, if the set of predicates P contains the atomic
subformulas of ϕ (i.e., atoms(ϕ) ⊆ P) then the abstraction function h defined above is
appropriate. However, since predicates are arbitrary, it is also possible that atoms(ϕ) * P,

4.4. Interpolating CEGAR 59

i.e., the model and the requirement is defined over different atomic propositions.3 The
rest of this section discusses this case.

It is rarely meaningful to define the model and the requirement over different sets of atomic
propositions if they are uninterpreted symbols. For example, AG (cat∨dog) would always
evaluate to false over the model of a traffic light because no state is labeled with “cat” or
“dog”. In my case however, labels are FOL predicates so it is possible to reason about a
model that has different labels than the requirement. For example, if a state ŝ is labeled
with (x > 5), it would be intuitive to say that ŝ |= (x > 0) even though ŝ is not explicitly
labeled with (x > 0).

Formally, let T be a symbolic transition system with a set of variables V , let P be the
set of predicates over V that the abstract Kripke structure M̂ is labeled with, let ϕ0 be
a FOL literal over V (i.e. a predicate or its negation) and let ψ1, ψ2 be FOL formulas
(without temporal operators). The relation |= is then defined in the following way for
safety properties on abstract Kripke structures.

1. (M̂, ŝ) |= ϕ0 iff
⋀
l∈L̂(ŝ) l⇒ ϕ0.

2. (M̂, ŝ) |= ψ1 ∧ ψ2 iff (M̂, ŝ) |= ψ1 ∧ (M̂, ŝ) |= ψ2.
3. (M̂, ŝ) |= ψ1 ∨ ψ2 iff (M̂, ŝ) |= ψ1 ∨ (M̂, ŝ) |= ψ2.
4. (M̂, ŝ) |= ψ1 → ψ2 iff (M̂, ŝ) |= ψ1 → (M̂, ŝ) |= ψ2.
5. (M̂, ŝ) |= ψ1 ↔ ψ2 iff [(M̂, ŝ) |= ψ1 ∧ (M̂, ŝ) |= ψ2]∨ [(M̂, ŝ) |= ¬ψ1 ∧ (M̂, ŝ) |= ¬ψ2].
6. (M̂, ŝ) |= AG ψ1 iff (M̂, ŝi) |= ψ1 holds for each state ŝi ∈ π̂ of each path π̂ =

(ŝ0, ŝ1, . . .) with ŝ0 = ŝ.

The definition above is similar to the classical definition of |= (Section 2.3.5). However,
there are some differences.

• A state ŝ satisfies a literal ϕ0 if the conjunction of its labels implies ϕ0.

• There is no corresponding rule for negation, i.e., ŝ ̸|= ϕ0 does not imply that ŝ |= ¬ϕ0.
If a FOL formula ψ contains negations, |= can be decided by transforming ψ into
NNF, where negations only apply to atomic predicates and the first rule for literals
can be used.

Lemma 1. Let ϕ be a FOL formula and let the abstraction h be defined as above.
If ŝ |= ϕ holds for an abstract state ŝ then s |= ϕ also holds for all concrete states
s ∈ h−1(ŝ).

Proof. Suppose that ŝ |= ϕ, but a state s ∈ h−1(ŝ) exists with s ̸|= ϕ. Since concrete
states are evaluations of the variables, if s ̸|= ϕ, then s |= ¬ϕ must hold. However,
s |= l for each label l ∈ L̂(ŝ) since concrete states share the label of the abstract state.
Therefore, s |= ¬ϕ∧

⋀
l∈L̂(ŝ) l, i.e., ¬ϕ∧

⋀
l∈L̂(ŝ) l is satisfiable. Using De Morgan’s rules,

3As an extreme case, it is also possible that P = {⊤}, i.e., the whole concrete state space is mapped to
a single abstract state with the label ⊤.

4.4. Interpolating CEGAR 60

this can be rewritten as ¬(¬(
⋀
l∈L̂(ŝ) l)∧ϕ), which is ¬((

⋀
l∈L̂(ŝ) l)→ ϕ). This expression

is satisfiable, thus by the definition of implication, (
⋀
l∈L̂(ŝ) l) ̸⇒ ϕ, i.e., ŝ ̸|= ϕ.

The opposite direction of Lemma 1 is that if at least one state s ∈ h−1(ŝ) exists with
s ̸|= ϕ (i.e., s |= ¬ϕ), then ŝ ̸|= ϕ.

Example 4.18. Consider a state ŝ with L̂(ŝ) = {x > 5}. Then ŝ |= (x > 0) but
ŝ ̸|= (x .= 10) and also ŝ ̸|= ¬(x .= 10). Moreover, ŝ can abstract the concrete states
s1 = (x .= 10) and s2 = (x .= 9) where s1 |= (x .= 10) and s2 |= ¬(x .= 10).

The previous example also emphasizes why it is important to explicitly label a concrete
state s with a literal ¬ϕ if s ̸|= ϕ. The following theorem states that the abstraction is an
over-approximation, i.e., no false positives are possible.

Theorem 2. Let P be an arbitrary set of FOL predicates over V , let ϕ be a FOL formula
over V and let M̂ be the abstract Kripke structure generated from the concrete Kripke
structure M by the abstraction function h defined in this section. Then M̂ |= AG ϕ ⇒
M |= AG ϕ.

Proof. If M̂ |= AG ϕ then ŝ |= ϕ for all reachable abstract states ŝ ∈ Ŝ. If a concrete
state s ∈ S is reachable with some path π = (s0, s1, . . . , s), then the abstract state h(s) is
also reachable with the path π̂ = (h(s0), h(s1), . . . , h(s)). Therefore, h(s) |= ϕ also holds.
Since h(s) |= ϕ, it can be concluded that s |= ϕ by using Lemma 1. This means that ϕ
holds for all reachable concrete states, i.e., M |= AG ϕ.

4.4.2 Model checking

Since the requirement is restricted to safety properties (AG ϕ) and the abstract Kripke
structure is already constructed, model checking amounts to traversing the abstract states
Ŝ and checking if a state ŝ with ŝ ̸|= ϕ is reachable. This is done using depth-first search,
which either returns a positive answer (M̂ |= AG ϕ) or an abstract counterexample. In
the former case it is concluded by Theorem 2 that M |= AG ϕ.

I also propose an optimization, namely iterative model checking, i.e., a subset of the
explored abstract state space does not have to be traversed again after refining the ab-
straction. This optimization is presented in Section 4.4.5 after introducing abstraction
refinement.

4.4.3 Concretizing the counterexample

The abstract counterexample π̂ = (ŝ1, ŝ2, . . . , ŝn) for the formula AG ϕ can be concretized
similarly to the clustered CEGAR approach. However, due to the arbitrary set of predi-
cates, ŝn ̸|= ϕ only means that at least one concrete state sn ∈ h−1(ŝn) exists, for which
sn ̸|= ϕ holds. However, there can also be states in h−1(ŝn), where ϕ holds. Consequently,

4.4. Interpolating CEGAR 61

it has to be checked with an extra condition whether the last concrete state sn ∈ h−1(ŝn)
of the concrete path is such that sn ̸|= ϕ.

As in the clustered approach, I use an SMT solver to check whether the counterexample π̂
is concretizable. Let ϕk be defined for 1 ≤ k ≤ n over s1, s2, . . . , sn in the same way, i.e.,

ϕk = s1 ∈ I ∧
⋀

1≤i≤k
h(si) = ŝi ∧

⋀
1≤i<k

(si, si+1) ∈ R

If ϕn is not satisfiable then the largest index f with ϕf being satisfiable is the index of the
failure state. On the other hand, if ϕn is satisfiable it is still possible that a concrete path
(s1, s2, . . . , sn) is obtained where sn |= ϕ. Thus, an additional formula ϕn+1 = sn ̸|= ϕ has
to be checked. If ϕn∧ϕn+1 is satisfiable then (s1, s2, . . . , sn) is a concrete counterexample,
otherwise the failure state is ŝn.

Example 4.19. Consider a symbolic transition system T with V = {x, y}, Dx = {0, 1,
2, 3} and Dy = {0, 1}. The concrete Kripke structure M can be seen in Figure 4.11(a).
Suppose, that P = {x < 2, y .= 1} and the requirement is AG (x ̸ .= 3∨y ̸ .= 0), i.e., only the
state (3, 0) violates the requirement. There are thus 2|P| = 4 abstract states. Partitioning
by P is indicated by dashed lines in Figure 4.11(a). The corresponding abstract Kripke
structure M̂ can be seen in Figure 4.11(b) with the following labeling.

• L̂(ŝ0) = { (x < 2),¬(y .= 1)}
• L̂(ŝ1) = { (x < 2), (y .= 1)}
• L̂(ŝ2) = {¬(x < 2),¬(y .= 1)}
• L̂(ŝ3) = {¬(x < 2), (y .= 1)}

Only the abstract state ŝ2 violates the requirement (i.e., ŝ2 ̸|= (x ̸ .= 3 ∨ y ̸ .= 0)), which is
reachable by the paths π̂1 = (ŝ0, ŝ2) and π̂2 = (ŝ0, ŝ3, ŝ2). Consider first π̂1: starting from
the initial state (0, 0) only (2, 0) can be reached in h−1(ŝ2), for which (x ̸ .= 3 ∨ y ̸ .= 0)
holds. Therefore, ŝ2 is the failure state, (2, 0) is a dead-end state and (3, 0) is a bad state,
causing the spurious counterexample.

Consider now π̂2: starting from (0, 0) only (3, 1) can be reached in h−1(ŝ3), but (3, 1) has
no transition to ŝ2. Therefore, ŝ3 is the failure state, (3, 1) is a dead-end state and (2, 1)
is a bad state.

4.4.4 Abstraction refinement

When an abstract counterexample π̂ has no corresponding concrete counterexample, the
abstraction has to be refined. As in the clustered approach, the goal is to separate dead-end
and bad states into different abstract states.

4.4. Interpolating CEGAR 62

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(x < 2) ¬(x < 2)

¬(y .= 1)

(y .= 1)

(a) Concrete state space.

ŝ0

ŝ1

ŝ2

ŝ3

(b) Abstract state space.

Figure 4.11: Abstraction example in the interpolating CEGAR.

Definition 4.8 (Dead-end, bad, irrelevant state). Given a spurious counterexam-
ple π̂ = (ŝ1, ŝ2, . . . , ŝn), the formal definition of dead-end (SD), bad (SB) and irrelevant
(SI) states are the following:

SD =

⎧⎨⎩sf
⏐⏐⏐⏐⏐⏐∃π = (s1, s2, . . . , sf) : s1 ∈ I ∧

⋀
1≤i≤f

h(si) = ŝi ∧
⋀

1≤i<f
(si, si+1) ∈ R

⎫⎬⎭ ,

SB =
{ {

s ∈ h−1(ŝf) | ∃s′ ∈ h−1(ŝf+1) : (s, s′) ∈ R
}

if f < n,

{s ∈ h−1(ŝn) | s ̸|= ϕ} if f = n,

SI = h−1(ŝf) \ {SD ∪ SB},

where f is the index of the failure state and AG ϕ is the requirement.

The definition of SD and SI is the same as in the clustered approach. In contrast, SB
has a different definition if the failure state is the last one, i.e., f = n. In such cases SB
consists of the states that violate ϕ. It is easy to see that SD ∩SB = ∅ in this case as well,
otherwise ŝf would not be a failure state.

As its name suggests, the interpolating CEGAR algorithm uses interpolants to refine the
abstraction. The algorithm can be configured to use either Craig interpolants to refine
only the failure state or interpolation sequences to refine all states of the counterexample.

Refinement with Craig interpolation

Let α and β be defined in the following way over s1, s2, . . . , sn.

α = s1 ∈ I ∧
⋀

1≤i≤f
h(si) = ŝi ∧

⋀
1≤i<f

(si, si+1) ∈ R

β =
{

h(sf+1) = ŝf+1 ∧ (sf , sf+1) ∈ R if f < n

sn ̸|= ϕ if f = n

The formula α describes paths leading to dead-end states in h−1(ŝf) as in the visibility-
based CEGAR, while β describes bad states. If f < n, bad states are those having a

4.4. Interpolating CEGAR 63

transition to the next state, otherwise bad states are those violating the requirement.
Since π̂ is a spurious counterexample, α ∧ β is unsatisfiable. Hence, a Craig interpolant
I can be calculated. The important properties of the interpolant are the following.

• α⇒ I , i.e., I describes the dead-end states but using less information than α.
• I ∧ β is unsatisfiable, i.e., bad states cannot satisfy I .
• I uses only common symbols in α and β. If f < n only variables of sf are the

common symbols. Otherwise (if f = n) only variables of sn are the common symbols.
Thus, in both cases I corresponds only to the failure state.

There are two possibilities to refine the abstraction using I .

1. A new abstraction function h ′ can be calculated in the same way as the initial
abstraction but now on the predicate set P ∪ {I }. This means that the number of
possible states is doubled. Each previous state can correspond to two possible new
states by appending the label I and ¬I . The failure state ŝf is also split, so the
spurious counterexample is eliminated.

2. h ′ can also be calculated by only replacing ŝf with ŝf1 and ŝf2 obtained by adding
I and ¬I to the labels of ŝf .

In my work I only adopt the latter option to keep the abstract state space as coarse as
possible. This approach is called lazy abstraction [51, 55].

Example 4.20. Consider the system in Example 4.19 and Figure 4.11 with the require-
ment AG (x ̸ .= 3 ∨ y ̸ .= 0) and the counterexample π̂1 = (ŝ0, ŝ2). The failure state is ŝ2,
thus interpolation is defined over s0, s2 in the following way:

• α = s0 ∈ I ∧ h(s0) = ŝ0 ∧ h(s2) = ŝ2 ∧ (s0, s2) ∈ R,
• β = s2 ̸|= (x2 ̸

.= 3 ∨ y2 ̸
.= 0).

Since s2 is a concrete state, β can be rewritten as β = s2 |= (x2
.= 3 ∧ y2

.= 0) It
can be seen that the formula I = (x2 < 3) is an interpolant, since α ⇒ I , β ∧ I is
unsatisfiable and I corresponds to the common variables, namely variables of s2. The
new partitioning and the refined abstract state space can be seen in Figure 4.12.

However, the path π̂2 = (ŝ0, ŝ3, ŝ2b) is still a counterexample, where the failure state is
ŝ3. Interpolation is therefore, defined over s0, s3, s2b in the following way:

• α = s0 ∈ I ∧ h(s0) = ŝ0 ∧ h(s3) = ŝ3 ∧ (s0, s3) ∈ R,
• β = h(s2b) = ŝ2b ∧ (s3, s2b) ∈ R.

4.4. Interpolating CEGAR 64

It can be seen that the formula I ′ = (x3
.= 3) is an interpolant, corresponding to ŝ3.

The new partitioning and the refined abstract state space can be seen in Figure 4.13.

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(x < 2) ¬(x < 2)

¬(y .= 1)

(y .= 1)

(x < 3)

¬(x < 3)

(a) Concrete state space.

ŝ0

ŝ1

ŝ2a

ŝ2b

ŝ3

(b) Abstract state space.

Figure 4.12: Refinement example with Craig interpolant.

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(x < 2) ¬(x < 2)

¬(y .= 1)

(y .= 1)

(x < 3)

¬(x < 3)

¬(x .= 3)

(x .= 3)

(a) Concrete state space.

ŝ0

ŝ1

ŝ2a

ŝ2b

ŝ3a ŝ3b

(b) Abstract state space.

Figure 4.13: Refinement example with Craig interpolant.

Refinement with interpolation sequences

Interpolation sequences do not require the failure state ŝf to be determined, since they are
calculated for the whole counterexample. Let α1, α2, . . . , αn+1 be defined in the following
way over s1, s2, . . . , sn.

αi =

⎧⎪⎪⎨⎪⎪⎩
s1 ∈ I ∧ h(s1) = ŝ1 if i = 1
h(si) = ŝi ∧ (si−1, si) ∈ R if 1 < i ≤ n
sn ̸|= ϕ if i = n+ 1

The formula α1 describes initial states in h−1(ŝ1), while α2, α3, . . . , αn describe states in
h−1(ŝ2), h−1(ŝ3), . . . , h−1(ŝn) that are reachable from the initial states. αn+1 describes
states violating the requirement. Since π̂ is a spurious counterexample, α1∧α2∧ . . .∧αn+1

is unsatisfiable. Thus, an interpolation sequence I0,I1, . . .In+1 exists with the following
properties:

• I0 = ⊤, In+1 = ⊥, i.e., interpolants that do not correspond to any state carry no
information,

4.4. Interpolating CEGAR 65

• Ij ∧ αj+1 ⇒ Ij+1 for 0 ≤ j ≤ n, i.e., the interpolants together do not allow bad
states,
• Ij refers only to the common symbols of α1, . . . , αj and αj+1, . . . , αn+1, i.e., the

variables of sj .

The refined abstraction h ′ in case of sequence interpolation is calculated by replacing
each ŝi (1 ≤ i ≤ n) with ŝi1 and ŝi2 obtained by adding Ii and ¬Ii to the labels of ŝi
respectively. It may occur that Ii = ⊤ or Ii = ⊥ for some 1 ≤ i ≤ n. In this case the
corresponding abstract state ŝi is not split.

Example 4.21. Consider a symbolic transition system with variables V = {x, y, z}.
Suppose, that the requirement is AG (x ̸ .= 5) and the abstract counterexample in Fig-
ure 4.14(a) is produced by the model checker. It can be seen that this counterexample
is spurious, since (5, 0, 0) cannot be reached from (0, 0, 0). Therefore, α1, α2, . . . , α5 is
defined over s1, s2, s3, s4 for sequence interpolation in the following way:

• α1 = s1 ∈ I ∧ h(s1) = ŝ1,
• α2 = h(s2) = ŝ2 ∧ (s1, s2) ∈ R,
• α3 = h(s3) = ŝ3 ∧ (s2, s3) ∈ R,
• α4 = h(s4) = ŝ4 ∧ (s3, s4) ∈ R,
• α5 = s4 ̸|= (x4 ̸

.= 5) (which can be rewritten as s4 |= (x4
.= 5)).

The sequence I0 = ⊤, I1 = ⊤, I2 = (x2 < 2), I3 = (x3 < 4), I4 = ⊥, I5 = ⊥ is an
interpolation sequence, since:

• I0 = ⊤,I5 = ⊥,
• ⊤ ∧ s1 ∈ I ∧ h(s1) = ŝ1 ⇒ ⊤ (I0 ∧ α1 ⇒ I1),
• ⊤ ∧ h(s2) = ŝ2 ∧ (s1, s2) ∈ R⇒ x2 < 2 (I1 ∧ α2 ⇒ I2),
• x2 < 2 ∧ h(s3) = ŝ3 ∧ (s2, s3) ∈ R⇒ x3 < 4 (I2 ∧ α3 ⇒ I3),
• x3 < 4 ∧ h(s4) = ŝ4 ∧ (s3, s4) ∈ R⇒ ⊥ (I3 ∧ α4 ⇒ I4),
• ⊥ ∧ s4 ̸|= (x4 ̸

.= 5)⇒ ⊥ (I4 ∧ α5 ⇒ I5),
• each Ii corresponds to the proper common variables.

Therefore, ŝ1 and ŝ4 are not split, ŝ2 is split with the predicate (x < 2) and ŝ3 with
(x < 4) as the dashed lines indicate. The abstract states after the refinement can be seen
in Figure 4.14(b). It is clear that the spurious counterexample is eliminated. It can also
be seen that both refinements are required.

Suppose now, that Craig interpolation is applied for the same problem. The failure state
is ŝ2, where (1, 1, 1) is a dead-end state, while other states are bad. Therefore, (1, 1, 1) has
to be separated from all other states with an interpolant. However, this requires all three
variables (e.g., I = (x2

.= 1∧ y2
.= 1∧ z2

.= 1)), since (1, 1, 1) is not distinguishable with

4.4. Interpolating CEGAR 66

only two variables. In contrast, sequence interpolation could be solved with two predicates
containing only x.

ŝ1 ŝ2 ŝ3 ŝ4

(0, 0, 0)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(2, 0, 0)

(2, 0, 1)

(2, 1, 0)

(2, 1, 1)

(3, 0, 0)

(3, 0, 1)

(3, 1, 0)

(3, 1, 1)

(4, 0, 0)

(4, 0, 1)

(4, 1, 0)

(4, 1, 1)

(5, 0, 0)

(a) Abstract counterexample.

ŝ1

ŝ2a

ŝ2b

ŝ3a

ŝ3b

ŝ4

(b) Abstraction refinement.

Figure 4.14: Refinement example with sequence interpolant.

After applying Craig or sequence interpolation, the abstract Kripke structure is updated.
For each state ŝ that was split into ŝ1 and ŝ2, the following steps are done.

• Ŝ ← Ŝ \ {ŝ} ∪ {ŝ1, ŝ2}.
• Successors/predecessors of ŝ1 and ŝ2 can be queried from an SMT solver. How-

ever, only those successors/predecessors have to be considered that were already
successors/predecessors of ŝ.

• ŝ1 ∈ Î and ŝ2 ∈ Î can also be queried from an SMT solver, but this check only has
to be done if ŝ ∈ Î. Otherwise ŝ1, ŝ2 /∈ Î.

4.4.5 Optimization: incremental model checking

As argued in the previous section, only a subset of the abstract states is refined using the
interpolants. Let ŝs denote the first state of the abstract counterexample ŝ1, ŝ2, . . . , ŝf−1,

ŝf , ŝf+1, . . . , ŝn that was split, i.e.,

• ŝs = ŝf with Craig interpolation,
• ŝs = ŝi with sequence interpolation, where i is the first index such that Ii ̸= ⊤ and

Ii ̸= ⊥.

4.4. Interpolating CEGAR 67

A non-incremental model checker loops through each initial state and explores the set
of reachable states. If a state violating the safety property is found, the actual path
is returned. However, the search is completely restarted in the next model checking
iteration despite the fact that only a subset of the states were split. The main idea of
the incremental approach is presented in Figure 4.15. The path (ŝ1, ŝ2, ŝ3, ŝ4) represents
the actual counterexample, where ŝ3 was split. Each state has some successors that were
already fully explored (drawn on the left side of the state) and also some successors yet to
be explored (drawn on the right side). There can also be initial states that were already
fully explored (ŝ5 in the figure) and initial states that will be explored after ŝ1 (ŝ6 in the
figure). States in the gray area were fully explored before ŝ3. Let this set be denoted by
Ĝ. It is clear that ŝ3 can only be reached from Ĝ through ŝ2. Otherwise, ŝ3 would first be
reached that way and not through ŝ2. Therefore, splitting ŝ3 does not affect states in Ĝ.
If exploration is continued with (ŝ1, ŝ2) on the stack, ŝ2 will “represent” states in Ĝ, i.e.,
if some of the new states could be reached from Ĝ, it will be reached from ŝ2. Therefore,
if ŝs is the first state that was split (ŝ3 in the example), states explored before ŝs do not
need to be re-explored and the actual path can be kept until ŝs−1.

ŝ1

ŝ2

ŝ3

ŝ4

ŝ5 ŝ6

Figure 4.15: Illustration of incremental model checking.

The incremental model checking approach is formalized in Algorithm 6. The input of the
algorithm is a symbolic transition system T , an abstract Kripke structure M̂ , the first
state ŝs in the counterexample that was split and a requirement AG ϕ. There are some
technical assumptions about the representation of the abstract Kripke structure. Initial
states Î are stored in a list and each state ŝ ∈ Ŝ has a list of its successors. When updating
the Kripke structure during the refinement, the refined states replace the original ones in
these lists. Furthermore, it is assumed that the set of explored states E, the backtrack
stack Q and the index of the actual initial state i is kept between two calls.

If the model checker is called for the first time, E is initialized to be empty and i corre-
sponds to the first initial state. Otherwise ŝs and states explored after ŝs are removed from
both E and Q, and a flag (isContinuation) is set to indicate that the search is continued
and some steps do not have to be repeated. The outer loop does the exploration from
each initial state. The stack Q stores pairs of states and indices (ŝ, k). The index k means
that when backtracking to ŝ, the kth successor has to be explored next, i.e., the first k−1

4.4. Interpolating CEGAR 68

successors are already fully explored. The initialization between lines 12 and 16 only have
to be done if the search is not a continuation or an initial state was split. The inner loop
takes the last element of the stack Q and checks if ŝ ̸|= ϕ holds. If yes, the actual path
(stored in Q) is returned as a counterexample. Otherwise the next successor of ŝ is put
on the stack. If ŝ has no successors, it is removed from the stack for backtracking.

Algorithm 6: Check abstract state space (interpolating CEGAR).
Input : T : Symbolic transition system

M̂ : abstract Kripke structure of T
ŝs: first split state
AG ϕ: requirement

Output : “Requirement holds” or an abstract counterexample
1 if first iteration then
2 E ← ∅;
3 i← 1;
4 isContinuation ← false;
5 else
6 Remove ŝs and states after ŝs from E and Q;
7 isContinuation ← true;
8 end
9 while i ≤ size of Î do

10 if ŝs ∈ Î ∨ ¬isContinuation then
11 ŝ0 ← ith element of Î;
12 if ŝ0 ∈ E then continue;
13 Q← {(ŝ0, 1)};
14 E ← E ∪ {ŝ0};
15 isContinuation ← false;
16 end
17 while Q ̸= ∅ do
18 (ŝ, k)← top(Q);
19 if ¬first iteration ∧ ŝs /∈ Î then k ← k − 1;
20 if ŝ ∈ E then continue;
21 E ← E ∪ {ŝ};
22 if ŝ ̸|= ϕ then return Q;
23 if k > number of successors of ŝ then pop(Q);
24 else
25 ŝ′ ← kth successor of ŝ;
26 k ← k + 1;
27 push(Q, (ŝ′, 1));
28 end
29 end
30 i← i+ 1;
31 end
32 return “Requirement holds”

4.5. Summary 69

4.5 Summary

This section summarizes the common and different aspects of the three CEGAR ap-
proaches presented in this chapter. A short overview can be seen in Table 4.2.

Table 4.2: Summary of the CEGAR algorithms.

Clustered Visibility-based Interpolating
Main idea Composite abstraction

functions, clustering,
predicate abstraction

Visible and invisible
variables

Predicate abstraction and
explicitly tracked variables

Init. abs. Clustering, create abstract
Kripke structures of
clusters

Collect visible variables Create abstract Kripke
structure

Model
checking

On-the-fly composition,
check safety property

On-the-fly exploration,
check safety property

Explore constructed state
space incrementally, check
safety property

Counterex.
examin.

Unfold Unfold Unfold and check last
state

Abs. ref. Split the components of
the failure state

Make new variables visible
based on interpolation

Lazy abstraction: split
failure state with Craig
interpolation or the
counterexample with
sequence interpolation

The clustered approach is based on composite abstraction functions and predicate ab-
straction, while visibility-based CEGAR uses visible and invisible variables. Interpolating
CEGAR can be regarded as a combination of the former approaches: it can handle both
explicitly tracked variables and predicates.

Interpolating CEGAR builds the initial Kripke structure explicitly, since it is expected
to be small. In contrast, the clustered approach only constructs the component Kripke
structures and the visibility-based algorithm only collects the visible variables.

Therefore, model checking is done on-the-fly in the clustered and visibility-based ap-
proaches. In contrast, the interpolating algorithm only traverses the previously built state
space with an incremental optimization. All three approaches currently work on safety
properties.

Examining the counterexample is performed using unfolding in all three approaches. How-
ever, the interpolating algorithm requires an extra check for the last state to violate the
requirement since the model can be defined over different labels than the requirement.

Abstraction refinement is different in all three approaches. Clustered CEGAR splits the
failure state by separating dead-end and bad states in its components. Visibility-based
CEGAR makes some of the previously invisible variables visible, inferred from interpolants.
Interpolating CEGAR either splits the failure state with a predicate from Craig interpola-
tion or splits all states of the counterexample with predicates from sequence interpolation.

4.5. Summary 70

Infinite state space

The generic framework (Section 4.1) ensures termination for models with finite state space.
However, the algorithms may also terminate for infinite models under some circumstances.

• The clustered approach can only deal with infinite models as long as their initial
abstraction can be verified. If refinement is required, the enumeration of infinitely
many dead-end states can cause non-termination.

• The visibility-based algorithm is capable of verifying infinite systems as long as the
variables with infinite domains are invisible. Otherwise the abstract state space also
becomes infinite. This yields non-termination if there is no counterexample, or the
depth-first search chooses an infinite path, which does not contain a state violating
the requirement.

• The advantage of the interpolating approach is that it does not need to enumerate
concrete states or concrete values of a variable (unless it is explicitly tracked). Conse-
quently, each step of the algorithm works on finite models. However, the refinement
loop may not terminate as states may be split infinitely many times.

Contributions

The clustered algorithm is mainly based on the work of Clarke et al. [46]. However,
instead of grouping concrete states, I only enumerate the abstract states using predicate
abstraction [47]. In contrast to the symbolic model checker of Clarke et al., I use on-the-fly
explicit model checking and I only support safety properties.

The visibility-based CEGAR is mainly based on a different work of Clarke et al. [50]. In
my work however, I use Craig interpolation [21] for refinement instead of integer linear
programming and decision tree learning. Furthermore, I use on-the-fly explicit model
checking compared to the symbolic method of Clarke et al. [50].

The interpolating method is a new approach, combining several algorithms and related
techniques. It employs both predicate abstraction [47] and explicitly tracked variables
(which are similar to the visibility-based method [50]). In the interpolating approach I
also proposed an incremental explicit model checker. Refinement can be achieved by both
Craig [62] and sequence interpolation [51], along with lazy abstraction [59].

71

Chapter 5

Implementation

In order to evaluate and compare the CEGAR approaches presented in Chapter 4, I im-
plemented a prototype of each algorithm. This chapter first gives an overview on the
architecture (Section 5.1), then the important features of the main components are high-
lighted. The main components are the TTMC framework (Section 5.2), the CEGAR core
(Section 5.3) and the CEGAR algorithms (Section 5.4). Finally, Section 5.5 presents how
the algorithms can be used from the command line or the graphical user interface.

5.1 Architecture

The architecture of the implementation can be seen in Figure 5.1. There are three main
components: the TTMC framework, the CEGAR core and the CEGAR algorithms. All
components are implemented in Java.1

The TTMC framework defines a metamodel and a textual language for describing symbolic
transition systems. The concrete system files can be parsed into instance models that serve
as an input for the algorithms. TTMC also provides a common interface for SAT/SMT
solvers. This way, the underlying solver can be changed transparently. Furthermore,
the framework is also equipped with a variety of utilities for manipulating formulas and
systems.

The core part of CEGAR defines the base data structures that are extended with specific
features by each algorithm. A generic CEGAR loop is also implemented in the core part.
Each main step (initialization, checking, concretization, refinement) is an interface, which
the specific algorithms must implement. There are also some core utilities that are helpful
for each algorithm.

The CEGAR algorithms correspond to the three approaches presented in Chapter 4. Each
algorithm has its own specific data structures and steps. The dashed line between the

1http://java.com (version 8)

http://java.com

5.2. TTMC framework 72

Command Line Interface Graphical User Interface

C
EG

A
R

al
go

rit
hm

s
Clustered

RefinerInitializer

ConcretizerChecker

Specific data structures

Visibility-based

RefinerInitializer

ConcretizerChecker

Specific data structures

Interpolating

RefinerInitializer

ConcretizerChecker

Specific data structures

C
EG

A
R

co
re

Base data
structures

Abstract state

Abstract system
...

Generic CEGAR loop

Initializer interface

Checker interface Concretizer interface

Refiner interface

Utilities
Logging

Visualization
...

T
T

M
C

fr
am

ew
or

k

SAT/SMT solver
interfaces

Symbolic transition
system metamodel

Utilities
Tseitin transformation

Expression builder
...

Symb.
transition

system
T = (V, Inv,

Tran, Init)

Z3

M
at

hS
AT

SM
T

In
te

rp
ol

Figure 5.1: Software architecture.

algorithms and the core indicates a non-strict layering, i.e., the algorithms can directly
access features of the framework as well.

I also implemented a command line interface (CLI) and a simple graphical user interface
(GUI) to be able to deploy and run the algorithms without a development environment.
The CLI and the GUI can instantiate and run the algorithms based on command line
arguments or GUI elements.

5.2 TTMC framework

TTMC is the codename of a verification framework developed at the Fault Tolerant Sys-
tems Research Group of Budapest University of Technology and Economics. The frame-
work provides a wide range of functionalities, but in my thesis I limit the discussion only
to those that are actually used by the algorithms presented in this work.

5.2. TTMC framework 73

Metamodel. The framework defines a textual language (e.g., Listing 2.1 on page 22)
and a metamodel for describing symbolic transition systems. A parser is also included that
takes a system description file and creates an instance model that serves as an input for the
algorithms. A system consists of VariableDeclarations, ConstraintDefinitions and
a PropertyDeclaration, where ConstraintDefinitions are Invariant-, Initial- or
TransitionConstraintDefinitions (representing Inv, Init and Tran respectively), and
the PropertyDeclaration is the requirement ϕ. ConstraintDefinitions and Property-

Declarations contain an Expression that serves as a base class for each element of the
logic. Expressions can be

• references to variables or constants, e.g., ReferenceExpression,
• Boolean connectives, e.g., NotExpression, AndExpression,
• functions of the logic, e.g., AddExpression, SubtractExpression,
• predicates of the logic, e.g., EqualityExpression, LessExpression,
• temporal operators, e.g., GloballyExpression, UntilExpression,
• other special expressions, e.g., IfThenElseExpression.

Solver interfaces. TTMC also defines a common interface for SAT/SMT solvers. This
way, the concrete solver can be changed transparently to the algorithms. Currently TTMC
supports MathSAT2 [66], Z33 [67], and SMTInterpol4 [68]. The latter two can also cal-
culate interpolants. For an extensive list of SMT solvers along with their capabilities,
the reader is referred to [69]. The common TTMCSolver interface provides the following
functions:

• Assert: assert a collection of expressions,
• Check: check if the asserted expressions are satisfiable,
• getStatus: get the result (satisfiable or unsatisfiable),
• getModel: get the satisfying interpretation,
• Push, Pop: Pop removes expressions that were asserted after the latest Push (incre-

mental solving).

Solvers that support interpolation also implement the TTMCInterpolatingSolver inter-
face, which adds the following extra functions on top of TTMCSolver:

• createInterpolantMarker: create markers, e.g. α, β or α1, α2, . . . , αn+1,
• Assert (with marker): assert a collection of expressions for a marker,
• getInterpolant: get the (Craig or sequence) interpolant.

2http://mathsat.fbk.eu/
3http://github.com/Z3Prover/z3
4http://ultimate.informatik.uni-freiburg.de/smtinterpol/index.html

http://mathsat.fbk.eu/
http://github.com/Z3Prover/z3
http://ultimate.informatik.uni-freiburg.de/smtinterpol/index.html

5.3. CEGAR core 74

Utilities. The framework is also equipped with a variety of utilities for manipulating
formulas and symbolic transition systems. ExpressionBuilder is a factory class for con-
structing formulas programmatically. ExpressionExtensions contains utility functions,
for example, checking isomorphism and collecting atomic subformulas. The CNF trans-
formation of Tseitin is also implemented as a utility function.

5.3 CEGAR core

The CEGAR core contains common functionalities shared by all CEGAR algorithms.
There are two main common data structures: IAbstractSystem is a wrapper for an
abstract transition system, while IAbstractState represents an abstract state. There
are also some helper data structures, for example to store paths and the result of the
algorithm, or to represent Kripke structures.

The most important feature of the core is the GenericCEGARLoop, which connects and
executes the four main steps (presented in Section 4.1.2), regardless of the type of ab-
straction. This is implemented with the strategy pattern [70], i.e., each main step is an
interface, for which the specific algorithms provide the implementation. These core inter-
faces are summarized in the following list, while their interaction can be seen in Figure 5.2.

1. IInitializer creates the initial abstraction with a function that takes a symbolic
transition system and returns an IAbstractSystem.

2. IChecker does the model checking with a function that takes an IAbstractSystem

and returns an AbstractResult, which is either a positive answer or a counterex-
ample in a form of an IAbstractState list.

3. IConcretizer examines the counterexample with a function that takes the IAbs-

tractSystem and the list of IAbstractStates (i.e., the counterexample). It returns
a ConcreteTrace, which is a list of concrete states, representing either a concrete
counterexample, or the longest concretizable prefix of the abstract path.

4. IRefiner refines the abstraction with a function that takes the IAbstractSystem,
the list of IAbstractStates (i.e., the counterexample), the ConcreteTrace and
returns the refined IAbstractSystem.

GenericCEGARLoop repeats steps 2–4 until a positive result or a concretizable counterex-
ample is obtained.

The core also contains some utilities for logging, visualization and debugging. Logging
is supported on the console (ConsoleLogger) or in files (FileLogger). The detailedness
of logging can be configured by setting a minimum level. Algorithms can also visualize

5.3. CEGAR core 75

1 IInitializer

2 IChecker 3 IConcretizer

4 IRefiner

Stop

Symbolic
transition
system

IAbstractSystem

AbstractResult
(positive)

IAbstractSystem,
List<IAbstractState>

ConcreteTrace
(concretizable)

IAbstractSystem,
List<IAbstractState>,
ConcreteTrace (prefix)IAbstractSystem

Figure 5.2: GenericCEGARLoop process.

the abstract state space. Currently the format of GraphViz5 (GraphVizVisualizer) and
yED6 (YedVisualizer) is supported.

The debugging feature (IDebugger) can explore and visualize the whole abstract and
concrete state space, including the abstract counterexample and the concretizable prefix.
Although it only works for small systems, it can be extremely useful during development
and for presenting how the algorithm works. An example image produced by the debugging
feature (using GraphViz) can be seen in Figure 5.3. Concrete and abstract states are
denoted by ellipses and rectangles respectively. A dashed edge indicates that the state
violates ϕ of the requirement AG ϕ, while a light edge means that the state is not reachable.
The abstract counterexample and its concretizable part is highlighted with a background
color. Initial (concrete or abstract) states are denoted by double or thick edges. Abstract
states are also annotated with labels and values of (explicitly tracked and visible) variables.

and(=(x, 1), =(y, 1))

and(=(x, 2), =(y, 1))

and(=(x, 2), =(y, 0))

and(=(x, 2), =(y, 2)) and(=(x, 1), =(y, 0))

and(=(x, 1), =(y, 2))

x = 1
y = 1
z = 0

x = 2
y = 2
z = 1

x = 1
y = 1
z = 1

x = 1
y = 1
z = 2

x = 1
y = 0
z = 2

x = 2
y = 0
z = 0

x = 1
y = 0
z = 1

x = 1
y = 0
z = 0

x = 2
y = 0
z = 1

x = 2
y = 0
z = 2

x = 2
y = 2
z = 2

x = 2
y = 2
z = 0

x = 2
y = 1
z = 0

x = 2
y = 1
z = 1

x = 2
y = 1
z = 2

x = 1
y = 2
z = 2

x = 1
y = 2
z = 1

x = 1
y = 2
z = 0

Figure 5.3: Example image generated by the debugger.

5http://www.graphviz.org/
6http://www.yworks.com/en/products/yfiles/yed/

http://www.graphviz.org/
http://www.yworks.com/en/products/yfiles/yed/

5.4. CEGAR algorithms 76

5.4 CEGAR algorithms

Due to the differences in the abstraction scheme of the algorithms, each one needs to store
different data about the abstract system and the abstract states. Hence, each algorithm
implements and extends IAbstractSystem and IAbstractState with specific attributes.

• The abstract state of the clustered algorithm (ClusteredAbstractState) is a prod-
uct of abstract states belonging to each cluster (ComponentAbstractState). There-
fore, ClusteredAbstractState is only a collection of ComponentAbstractStates,
while the latter one stores the predicates or their negations that hold for the state.
The abstract system (ClusteredAbstractSystem) keeps track of the predicates, the
formula and variable clusters, and the Kripke structures corresponding to the clus-
ters.

• An abstract state in the visibility-based approach (VisibleAbstractState) stores
the values of the visible variables. The abstract system (VisibleAbstractSystem)
only keeps track of the visible and invisible variables. No Kripke structure is stored,
since it is constructed on-the-fly during model checking.

• The abstract state in the interpolating algorithm (InterpolatedAbstractState)
stores the values of the explicitly tracked variables and the set of predicates (or their
negations) that hold for the state. The abstract system (InterpolatedAbstract-

System) stores the initial predicates and the explicitly built Kripke structure.

Each algorithm also implements the four main steps (initialization, checking, concretiza-
tion, refinement) differently. Each step is parameterized with a solver, a logger and a
visualizer, but some steps also have further, algorithm specific parameters (e.g., interpo-
lation type). A class diagram can be seen in Figure 5.4.

ClusteredInitializer determines the clusters and builds the initial abstract Kripke
structures. VisibleInitializer only determines the set of visible and invisible vari-
ables. InterpolatingInitializer builds the initial abstract Kripke structure. It can
be parameterized with the set of explicitly tracked variables and the initial predicates. It
can collect initial predicates from the requirement or from the conditions of the transition
relation.

Model checking is done on-the-fly in ClusteredChecker and VisibleChecker. In con-
trast, InterpolatingChecker only traverses the previously built abstract Kripke struc-
ture. Furthermore, it can be parameterized to use incremental model checking.

Concretization of the counterexample is the same for the clustered and visibility-based
approaches and there is only an extra condition in the interpolating algorithm. Therefore, a
base class (ConcretizerBase) is implemented in the core for concretizing counterexamples.
ClusteredConcretizer and VisibleConcretizer calls the base class without the extra
condition, while InterpolatingConcretizer applies the extra check as well.

5.4. CEGAR algorithms 77

GenericCEGARLoop

«interface»
IInitializer

«interface»
IChecker

«interface»
IConcretizer

«interface»
IRefiner

VisibleInitializer

ClusteredInitializer

InterpolatingInitializer

VisibleChecker

ClusteredChecker

InterpolatingChecker

«abstract»
ConcretizerBase VisibleConcretizer

ClusteredConcretizer

InterpolatingConcretizer

VisibleRefiner

ClusteredRefiner

InterpolatingRefiner

«interface»
IVariableCollector

InterpolatingVariableCollector

«interface»
IInterpolator SequenceInterpolator

CraigInterpolator

ExplicitInterpolator

Figure 5.4: Architecture of the main classes.

ClusteredRefiner splits the components of the failure state in the component Kripke
structures. VisibleRefiner is parameterized with an IVariableCollector (strategy
pattern) that infers new variables to be made visible. Currently, only the interpolation
based method (InterpolatingVariableCollector) is implemented, but the architecture
is easily extensible. InterpolatingRefiner can be parameterized with an IInterpolator

(strategy pattern) that calculates the interpolant. Currently, there are three interpola-
tion methods: CraigInterpolator, SequenceInterpolator and ExplicitInterpola-

tor. The first two implement Craig and sequence interpolation respectively. Explicit-

Interpolator explicitly enumerates dead-end states into a formula, which is not efficient,
but suitable for testing soundness of the other interpolation methods.

I also implemented the builder pattern [70] for each algorithm (ClusteredCEGARBuilder,
VisibleCEGARBuilder, InterpolatingCEGARBuilder) to make the parameterization and
instantiation of the algorithms more convenient.

5.5. Usage 78

5.5 Usage

The algorithms are deployed into a jar file, which can be run without a development
environment. Both a command line and a graphical interface is provided.

Command Line Interface. The CLI class implements the command line interface for
running the algorithms. Table 5.1 summarizes the possible arguments. The column “Alg.”
lists the algorithms (Clustered, Visibility-based, Interpolating) for which the option is
applicable.

Table 5.1: Command line arguments.

Option Description Alg.
-a <algorithm> Algorithm to run, possible values: clustered, visible,

interpolating
C V I

-m <model> Path of the model C V I
-l <log> Logging method, possible values: console or a filename C V I
-ll <level> Level of logging C V I
-vp <path> Visualization path, where graphs are generated C V I
-vt <type> Visualization type, possible values: yed, graphviz C V I
-vl <level> Level of visualization C V I
-s <solver> Solver, possible values: mathsat, smtinterpol, z3 C V I
-is <solver> Interpolating solver, possible values: smtinterpol, z3 V I
-cnf <bool> Apply CNF (Tseitin) transformation V I
-cc <bool> Collect initial predicates from the conditions of Tran I
-cs <bool> Collect initial predicates from the requirement ϕ I
-im <method> Interpolation method, possible values: craig, explicit,

sequence
I

-imc <bool> Enable incremental model checking I
-ex <vars> List of explicitly tracked variables I
-dbg <bool> Enable debug mode C V I

Parameters -a and -m are mandatory, others are optional. If an optional parameter is not
given, the default value is applied.

Example 5.1. The command below runs the interpolating algorithm on “test.system”
with console logging (level 3), using the Z3 solver, applying Tseitin transformation and
tracking x, y explicitly.

java -jar cegar.jar -a interpolating -m test.system -l console

-ll 3 -s z3 -is z3 -cnf true -ex x,y

Graphical User Interface. If the application is started without any argument, a graph-
ical user interface appears, which is implemented in the class GUI. A screenshot of the GUI
can be seen in Figure 5.5. The algorithms can be configured and started with the controls
on the left side of the window, while the loaded system and the output appears in the rest

5.5. Usage 79

of the window. The algorithm runs on a background thread, therefore its output can be
continuously observed (as on a console).

Figure 5.5: Graphical User Interface.

80

Chapter 6

Evaluation

This chapter evaluates and compares the algorithms based on measurements for several
models. Section 6.1 presents the performance of the algorithms on simple finite state mod-
els. Section 6.2 focuses on PLC models that have a finite, but large state space. Section 6.3
evaluates the algorithms on an infinite model, namely Fischer’s protocol. Section 6.4 dis-
cusses the bottleneck of the algorithms identified by profiling and Section 6.5 summarizes
the results. The measurements were performed with the following configuration:1

• Intel Core i7 4710HQ 3.5GHz processor,
• 8 GB RAM,
• Windows 8.1 x64,
• Java 8.

6.1 Simple finite state space models

This section presents the evaluation of the algorithms on simple models with finite state
space. These models contain 1–4 variables and have a concrete state space between 10–100
states. Table 6.1 contains run time results for the following five configurations, correspond-
ing to the main columns:

1. clustered,
2. visibility-based,
3. interpolating with Craig interpolation,
4. interpolating with Craig interpolation and incremental model checking,
5. interpolating with sequence interpolation and incremental model checking.

The sub-columns T, #R and #S represent the run time, the number of refinements and
the sum of explored (abstract) states in each iteration respectively. The X or × sign before
the name of a model indicates whether it meets the requirement or not.

1The measurements were evaluated in a new, prototype version of the TTMC framework, which cur-
rently only supports the Z3 solver.

6.1. Simple finite state space models 81

The “loop” models correspond to simple programs containing a while loop. The “bool”
and “simple” models are similar to the model in Listing 4.1. As their name suggests,
the “counter” models represent counters. The “read_write” model was translated from a
simple Petri net, representing a resource that can be accessed by readers and writers.

Table 6.1: Measurement results for simple finite state models.

Clustered Visible Int. (Cr.) Int. (Cr., inc.) Int. (seq., inc.)
Model T (ms) #R #S T (ms) #R #S T (ms) #R #S T (ms) #R #S T (ms) #R #S

X loop 49 0 5 38 1 20 73 5 19 56 5 14 62 5 18
× loop 56 4 40 33 1 18 208 11 78 200 11 38 327 10 62
× bool1 1 0 3 1 0 3 4 2 6 3 2 5 3 2 6
× bool2 2 0 4 3 0 8 4 3 10 4 3 7 5 3 9
X counter 2 0 2 6 0 11 3 1 2 2 1 2 2 1 2
× counter 26 4 20 5 0 6 30 5 21 27 5 15 40 5 18
X read_write 14 0 3 7 0 5 12 2 5 13 2 4 16 2 6
× simple1 15 0 3 10 0 4 8 1 3 8 1 3 9 1 3
X simple2 37 3 15 4 0 2 36 4 10 31 4 8 23 3 8
× simple3 38 1 7 18 1 6 40 4 12 39 4 10 21 2 7

Measurements show that for small models the visibility-based approach performs best
in most cases. Usually, all variables are visible initially or after the first iteration, so
the visibility-based algorithm simply enumerates the concrete states, which is efficient
for models with a small concrete state space. The clustered method also performs well
for these models, however, it may require more iterations to find a counterexample (e.g.,
“loop” or “counter”). The interpolating configurations start with a predicate set P = {⊤},
hence the state space exploration is guided completely by the interpolants. This yields an
overhead in the run time for most models. It can be seen that the total number of explored
states is less if incremental model checking is used. However, since models are small, the
effect of incremental model checking on run time is also small. It can also be seen that
sequence interpolation yields equal or less refinements, but it has to explore more states.

Determining the initial set of predicates

Table 6.2 compares four different strategies for determining the initial set of predicates P
in the interpolating algorithm:

1. P = {⊤},
2. P = atoms(Tran),
3. P = atoms(ϕ),
4. P = atoms(Tran) ∪ atoms(ϕ),

where atoms(Tran) denotes the atomic subformulas of the conditions in the transition
relation and atoms(ϕ) denotes the atomic subformulas of the requirement.

Measurements show that collecting initial predicates from the requirement (ϕ) yields less
iterations and shorter run time in many cases. However, collecting predicates from the

6.2. CERN PLC models 82

Table 6.2: Measurement results for predicate collecting strategies.

Int. Int. (Tran) Int. (ϕ) Int. (Tran, ϕ)
Model T (ms) #R #S T (ms) #R #S T (ms) #R #S T (ms) #R #S

X loop 99 5 14 245 11 51 57 4 13 96 0 5
× loop 185 11 40 192 9 48 182 10 39 190 9 48
× bool1 3 2 5 4 2 5 1 0 3 2 0 3
× bool2 4 3 7 4 3 7 6 0 8 6 0 8
X counter 2 1 2 97 10 30 1 0 1 3 0 2
× counter 28 5 15 26 4 14 25 4 14 26 4 14
X read_write 11 2 4 11 2 4 12 0 3 14 0 3
× simple1 25 1 3 97 0 2 20 0 2 94 0 2
X simple2 31 4 8 109 3 11 26 1 4 110 3 11
× simple3 35 4 10 220 1 6 41 2 8 214 1 6

conditions (Tran) has a negative effect on performance. If predicates are collected both
from the conditions and the requirement, less iterations are required, but the run time of
the algorithm is longer due to the construction of the (often unnecessarily) large initial
abstract state space.

6.2 CERN PLC models

CERN, the European Organization for Nuclear Research2 is a particle physics labora-
tory near Geneva, Switzerland. Physicists, engineers and computer scientists are working
together at CERN to discover the fundamental structure of the universe. The main instru-
ments built at CERN are particle accelerators and detectors. Accelerators boost beams
of particles to high energies and make them collide with another beam or a fixed target.
Detectors record the data at such interaction points for further analysis. Many systems at
CERN use PLCs (Programmable Logic Controllers) as industrial controllers, including the
LHC (Large Hadron Collider), which is the most powerful particle accelerator to date. A
bug in the controller of such powerful instruments can cause serious injuries and damages.

A group at CERN is working on the formal verification of PLC programs [71]. They
translate the PLC codes into an automaton-based intermediate model. Several reductions
are applied directly on the intermediate model [72] before it is transformed to the syntax
of a model checker. The intermediate model can be transformed into a symbolic transi-
tion system described in the language of the TTMC framework3 as well, which can then
be checked using the algorithms presented in this thesis. Table 6.3 contains run time,
refinement iterations and the number of explored states, while Table 6.4 breaks down the
run time (in percentages) to the four main steps (In.: initialization, Ch.: model checking,
Co.: counterexample concretization, Re.: refinement). Where no result is available, the
algorithm ran out of memory or could not verify the instance in 60 minutes.

All models were extracted from a PLC module called OnOff [71] based on different require-
ments. OnOff is a generic actuator module that can represent valves, heaters, motors, etc.

2http://home.cern/
3The transformation was implemented by Dániel Darvas and the author.

http://home.cern/

6.2. CERN PLC models 83

in a PLC code. The models contain 24 to 83 variables and have a potential concrete state
space between 108 and 1026 states.4

Table 6.3: Measurement results for PLC models.

Int. (sequence) Int. (Craig) Visible
Model T (s) #R #S T (s) #R #S T (s) #R #S

× LOCAL_vc1 56.3 34 191 27.7 33 100 41.1 7 1640
× LOCAL_vc2 55.3 34 191 29.3 33 100 36.2 7 1697
X REQ_1-1 117.7 23 292 218.3 109 2419 8.3 1 369
X REQ_1-8 15.7 16 82 46.5 64 1076 3.5 1 165
× REQ_1-8 444.6 31 1198 52.6 65 1069 8.3 2 274
X REQ_1-9 24.8 17 98 51.2 63 1130 3.6 1 167
X REQ_2-3b − − − 1 663.2 159 4752 1 362.4 3 20893
X REQ_3-1 515.0 66 1047 224.1 58 552 84.7 2 1163
× REQ_3-2 − − − 104.4 37 111 75.8 2 628
X UCPC-1721 105.4 32 633 114.5 90 1716 15.4 5 1506

Table 6.4: Run time percentage of each step for PLC models.

Int. (sequence) Int. (Craig) Visible
Model In. Ch. Co. Re. In. Ch. Co. Re. In. Ch. Co. Re.

× LOCAL_vc1 0.5% 0.1% 19.1% 80.2% 1.2% 0.2% 46.5% 52.1% 0.5% 44.4% 33.2% 21.8%
× LOCAL_vc2 0.5% 0.1% 18.2% 81.2% 1.1% 0.2% 49.1% 49.7% 0.5% 54.0% 28.7% 16.8%
X REQ_1-1 0.2% 0.1% 4.3% 95.4% 0.1% 0.5% 42.2% 57.2% 2.4% 48.4% 24.9% 24.3%
X REQ_1-8 1.8% 0.1% 18.8% 79.2% 0.6% 0.6% 39.4% 59.4% 5.6% 52.8% 13.4% 28.2%
× REQ_1-8 0.1% 0.1% 2.4% 97.5% 0.5% 0.6% 42.5% 56.4% 2.4% 35.3% 42.9% 19.4%
X REQ_1-9 1.2% 0.1% 16.3% 82.4% 0.6% 0.8% 31.6% 67.0% 5.0% 51.7% 14.8% 28.5%
X REQ_2-3b − − − − 0.1% 0.3% 32.6% 67.0% 0.0% 53.8% 43.0% 3.2%
X REQ_3-1 0.2% 0.1% 11.7% 88.0% 0.4% 0.3% 42.9% 56.4% 0.7% 42.6% 32.8% 23.9%
× REQ_3-2 − − − − 0.8% 0.1% 48.2% 50.9% 0.8% 27.5% 41.5% 30.2%
X UCPC-1721 0.2% 0.2% 7.4% 92.2% 0.2% 0.5% 35.0% 64.2% 1.2% 80.1% 9.0% 9.7%

The clustered algorithm was not able to verify any of the instances due to the large number
of dead-end states in “PolyRefine” (Algorithm 3). The interpolating and visibility-based
algorithms however, show diverse results. The visibility-based algorithm has the best per-
formance for most of the models, except “LOCAL_vc1” and “LOCAL_vc2”, where the
interpolating approach dominates. It can be observed that for most models Craig inter-
polation gives a better performance for a violated requirement and sequence interpolation
for a fulfilled requirement. Further measurements pointed out that the bottleneck of the
algorithm lies in the transformation of formulas (see Section 6.4), which has the biggest
impact on refinement (especially interpolation). The interpolating algorithms refine the
state space in many small steps (many iterations), in contrast to the visibility-based ap-
proach, which performs fewer, but bigger steps. The results in Table 6.4 also confirm that
refinement dominates the run time of the interpolating approaches, especially sequence in-
terpolation, while the visibility-based algorithm is mostly dominated by the model checking
step. Consequently, the visibility-based algorithm is less affected by the bottleneck.

4The potential state space is estimated by all possible evaluations of the system variables. However,
the actual state space may be smaller, as not every evaluation may be reachable.

6.3. Fischer’s protocol 84

Explicitly tracked variables

The PLC models contain a variable loc, which represents the location in the control flow
automaton (similarly to program counters). I observed that interpolants often correspond
to this variable, e.g. loc .= 0 , loc .= 1 , . . ., loc .= n. With this extra knowledge, I configured
the interpolating algorithms to track this location variable explicitly. The results can
be seen in Table 6.5. The columns “Int. (seq.)” and “Int. (Cr.)” contain the same
results as the corresponding columns in Table 6.3. The other two columns represent the
configurations where the location variable was explicitly (“expl.”) tracked.

Table 6.5: Measurement results for PLC models with explicitly-tracked variables.

Int. (seq.) Int. (seq., expl.) Int. (Cr.) Int. (Cr., expl.)
Model T (s) #R #S T (s) #R #S T (s) #R #S T (s) #R #S

× LOCAL_vc1 56.3 34 191 52.5 1 81 27.7 33 100 46.9 20 452
× LOCAL_vc2 55.3 34 191 50.7 1 81 29.3 33 100 44.2 20 452
X REQ_1-1 117.7 23 292 55.9 6 212 218.3 109 2419 31.9 34 629
X REQ_1-8 15.7 16 82 6.6 2 47 46.5 64 1076 19.1 21 353
× REQ_1-8 444.6 31 1198 38.8 5 192 52.6 65 1069 38.6 35 650
X REQ_1-9 24.8 17 98 6.7 2 47 51.2 63 1130 19.5 21 352
X REQ_2-3b − − − 238.3 2 120 1 663.2 159 4752 370.4 52 1369
X REQ_3-1 515.0 66 1047 171.3 1 70 224.1 58 552 179.5 26 657
× REQ_3-2 − − − 49.0 0 43 104.4 37 111 48.2 0 43
X UCPC-1721 105.4 32 633 37.5 11 193 114.5 90 1716 72.7 94 1845

In most cases the performance of the algorithms is 2–4 times or even more faster with
the explicitly tracked variable, except for the “LOCAL_vc1” and “LOCAL_vc2” models.
There are two models (“REQ_2-3b” and “REQ_3-2”), which could not be verified with
sequence interpolation previously. However, using explicitly tracked variables the run
time is even shorter than the run time of the visibility-based algorithm (see Table 6.3).
It can also be seen that in most cases sequence interpolation performs better for violated
requirements, while Craig interpolation for fulfilled requirements.

Note, that the idea of tracking the location variable explicitly can not only be applied to
the models above. It can be generalized to any model that is derived from an automaton-
based or state machine model. Moreover, even a simple heuristic can detect such variables
by searching for predicates of the form vi

.= 0, vi
.= 1, . . ., vi

.= n in the formulas of the
symbolic transition system.

6.3 Fischer’s protocol

Fischer’s protocol [73] is a mutual exclusion algorithm for arbitrary many components.
Mutual exclusion is achieved by a lock that can be read and written with respect to a lower
and an upper time bound. The CEGAR algorithms presented in this thesis cannot handle
parametric problems, therefore I ran the algorithms for a fixed number of participants.
However, even a non-parametric model has an infinite state space due to the clock variables
(having domain Q). The results are summarized in the following list.

6.4. Profiling 85

• The clustered algorithm cannot verify the initial abstraction and runs into an infinite
loop when enumerating the infinitely many states in “PolyRefine” (Algorithm 3), due
to variables with infinite domain.

• Each initially visible variable of the visibility-based approach has a finite domain.
However, some variables with infinite domain become visible after a few iterations,
which prevents the algorithm from termination.

• The interpolated algorithm is able to to verify the protocol for two and three par-
ticipants. The results are presented in Table 6.6 and Table 6.7. It can be seen in
Table 6.6 that Craig interpolation performs better than sequence interpolation and
the effect of incremental model checking is also visible.

Table 6.7 breaks down the runtime (in percentages) to the four main steps. Con-
cretization and refinement together dominate run time in case of Craig interpolation.
However, run time is dominated entirely by refinement with sequence interpolation.
Further measurements pointed out that the bottleneck of refinement is the function
that obtains the interpolant from the solver (see Section 6.4 for details).

Table 6.6: Measurement results for Fischer’s protocol.

Int. (Cr.) Int. (Cr., inc.) Int. (seq., inc.)
Model T (s) #R #S T (s) #R #S T (s) #R #S

X fischer2 1.38 17 120 1.04 17 69 2.52 15 107
× fischer2 0.29 11 60 0.29 11 41 0.77 9 45
X fischer3 14.44 97 2442 13.97 97 998 72.86 101 1584
× fischer3 1.37 19 130 1.29 19 70 1.47 9 44

Table 6.7: Run time percentage of each step for Fischer’s protocol.

Int. (Cr.) Int. (Cr., inc.) Int. (seq., inc.)
Model In. Ch. Co. Re. In. Ch. Co. Re. In. Ch. Co. Re.

X fischer2 11.7% 2.0% 22.3% 63.8% 0.9% 1.7% 23.6% 73.8% 0.4% 1.0% 8.0% 90.6%
× fischer2 2.4% 2.8% 29.6% 65.2% 2.1% 3.4% 29.8% 64.7% 0.8% 1.2% 10.7% 87.2%
X fischer3 0.1% 2.1% 39.2% 58.5% 0.1% 0.9% 40.3% 58.7% 0.0% 0.3% 10.9% 88.8%
× fischer3 0.9% 0.7% 34.7% 63.5% 0.9% 0.5% 34.5% 64.0% 0.8% 0.2% 14.9% 84.2%

6.4 Profiling

The algorithm provides information about the distribution of run time among the four
main steps (e.g., see Table 6.7). However, I also examined some (mainly long) runs of
the algorithm with the JVM Monitor5 profiling tool to get more detailed information. It
turned out that in most cases the bottleneck of the algorithm is the transformation of
formulas.

The formulas Init, Tran, Inv, ϕ and the labels of the states correspond to variables without
indices (e.g., x, y and x′, y′). However, formulas are often asserted to multiple states at the

5http://jvmmonitor.org/

6.5. Summary 86

same time (e.g., describing paths). In such cases the states are differentiated with variable
indices (e.g., x0, y0 corresponds to s0; x1, y1 corresponds to s1, . . .). To demonstrate the
issue, recall Example 2.13 on page 23. In order to describe concrete paths with length n,
the formulas Tran and Inv have to be copied n−1 and n times respectively. Each variable
v ∈ V in the ith copy is replaced by vi, while the primed version v′ is replaced by vi+1.
This issue can also be observed in the opposite direction: the result of the solver may
contain n instances of a variable, which has to be transformed back to a path of length n
(see Example 2.13). When the result of the solver is a Craig or sequence interpolant, it
also corresponds to one or more states. Such formulas also have to be transformed back
(see Example 4.21 on page 64).

I observed that these transformations are performed mostly during concretization and
refinement (especially interpolation). Profiling results show that it can be responsible for
even 50–70% of the run time for models with large formulas (e.g., “fischer3”). Solving
this issue is not trivial: a possible solution would be to use caching to store the replaced
formulas. However, counterexamples often have a length of 100–1000 or even more, which
means that many versions of a formula have to be stored. Also, if multiple solvers have to
be supported, the formulas must be described with solver independent objects that again
need to be transformed.

6.5 Summary

Measurement results show that the clustered and visibility-based approaches perform bet-
ter on small, finite state space models. For larger models, the visibility-based and interpo-
lating algorithms are more efficient. The extra knowledge of tracking a variable explicitly
can also improve the performance of the interpolating approach. It can be observed that
sequence interpolation is more efficient for violated requirements and Craig interpolation
for fulfilled requirements. Furthermore, the interpolating algorithm was also able to verify
a model with infinite state space. Profiling results identified the bottleneck of the algo-
rithms, namely the transformation of formulas between the algorithms and the solver. The
biggest impact of this bottleneck can be observed during concretization and refinement
(especially interpolation).

87

Chapter 7

Conclusion

Counterexample-guided abstraction refinement is a promising formal verification technique
that has been widely studied in the past fifteen years. In this thesis I examined, devel-
oped and evaluated three CEGAR-based algorithms under the common framework of
existential abstraction. The results of this thesis have both a theoretical and a practical
importance. From the theoretical point of view, I examined the background and literature
of CEGAR-based model checking along with related techniques. I presented the clustered
and visibility-based CEGAR approaches that are mainly based on existing algorithms from
the literature. I also proposed a new algorithm, which is a combination of the former two
methods and various related techniques, including lazy abstraction and interpolation.

From the practical point of view, I implemented the three algorithms in the TTMC frame-
work and I evaluated and compared their performance. The architecture of the software
provides an easily configurable and extensible framework for CEGAR-based techniques.
Measurements show that the clustered and visibility-based approaches perform better on
smaller (finite) models, while the visibility-based and interpolating methods are efficient
for large state spaces. Moreover, the latter one is also capable of verifying infinite systems
in some cases.

During my preparation of this thesis I successfully completed all of the specified objectives.

• I presented the CEGAR approach and related techniques for the model checking of
transition systems (Chapter 3 and Chapter 4).

• I implemented three concrete, CEGAR-based algorithms in the TTMC framework
(Chapter 5).

• I compared and evaluated the performance of the algorithms (Chapter 6),

• I proposed a new algorithm, based on interpolation, which is a combination and
improvement of various algorithms and techniques (Section 4.4).

88

Future work. Even though all the objectives were met, there are still several opportu-
nities for further research and improvements.

• A possible future direction is to extend the algorithms to handle different temporal
formulas than only safety properties. The general framework supports full ACTL*
in theory, but then an ACTL* model checker is required and the refinement step
also has to deal with complex counterexamples (e.g., loops, trees).

• A new refinement strategy could be developed for the visibility-based algorithm using
unsat cores: variables included in formulas of the unsat core would be made visible.

• Although the interpolating approach can handle both explicitly tracked variables
and predicates at the initial abstraction, it only uses new predicates for the refine-
ment. It would be interesting to extend the set of explicitly tracked variables during
refinement.

• As argued in Chapter 3, CEGAR is a general approach that can work with other
formalisms than transition systems. A possible future direction is to extend CEGAR
for programs and timed automata.

• Profiling results pointed out that a bottleneck of the algorithm is the transformation
of formulas. A future challenge in the implementation is the optimization of such
transformations.

89

Acknowledgment

First of all, I would like to thank my family, especially my parents and my girlfriend for
their support throughout my studies. Without their help, it would have been much more
difficult to focus on my studies and researches.

The roots of this work go back to 2012, when András Vörös offered me the opportunity
to work on a Petri net related CEGAR algorithm under his supervision. I am “infinitely”
thankful for his help and support towards my studies, researches, publications and my
participation in conferences and scholarships. I would also like to express my acknowledg-
ment to Tamás Tóth, who joined András for the supervision of this work. I am thankful
for his help and ideas both on the theoretical side and in the implementation.

Furthermore, I would like to thank Dániel Darvas for his remarks and advices on the draft
version of my thesis, for providing the PLC models and for the opportunity to present
my work to their group at CERN. Last but not least, I am also thankful for the ideas,
remarks and comments of Vince Molnár.

90

List of Figures

2.1 Example Kripke structure of a traffic light. 21

2.2 Transition system corresponding to the symbolic transition system in List-
ing 2.1. 23

2.3 Illustration of CTL operators. 25

2.4 Illustration of LTL operators. 25

2.5 Comparison of the expressive power of temporal logics. 26

3.1 Bounded model checking process. 31

3.2 Illustration of over-approximation. 32

3.3 Illustration of under-approximation. 32

4.1 Existential abstraction example. 39

4.2 Abstraction refinement example. 40

4.3 Abstraction eliminating the counterexample, but not being a refinement. . . 41

4.4 Generic CEGAR process. 41

4.5 Example on enumerating only the abstract states. 46

4.6 Abstract Kripke structures corresponding to the clusters. 47

4.7 Spurious counterexample. 50

4.8 Example on a fine and a coarse refinement. 51

4.9 Abstraction example based on visible and invisible variables. 54

4.10 Abstraction refinement by making the variable y visible. 56

4.11 Abstraction example in the interpolating CEGAR. 61

4.12 Refinement example with Craig interpolant. 63

List of Figures 91

4.13 Refinement example with Craig interpolant. 64

4.14 Refinement example with sequence interpolant. 66

4.15 Illustration of incremental model checking. 67

5.1 Software architecture. 73

5.2 GenericCEGARLoop process. 76

5.3 Example image generated by the debugger. 76

5.4 Architecture of the main classes. 78

5.5 Graphical User Interface. 80

92

List of Tables

4.1 Example labeling of a cluster. 45

4.2 Summary of the CEGAR algorithms. 71

5.1 Command line arguments. 79

6.1 Measurement results for simple finite state models. 82

6.2 Measurement results for predicate collecting strategies. 83

6.3 Measurement results for PLC models. 84

6.4 Run time percentage of each step for PLC models. 84

6.5 Measurement results for PLC models with explicitly-tracked variables. . . . 85

6.6 Measurement results for Fischer’s protocol. 86

6.7 Run time percentage of each step for Fischer’s protocol. 86

93

Bibliography

[1] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press, 2008.

[2] A. R. Bradley and Z. Manna, The calculus of computation: Decision procedures with
applications to verification. Springer, 2007.

[3] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pp. 151–158, ACM, 1971.

[4] M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon, “The international SAT solver
competitions,” AI Magazine, vol. 33, no. 1, pp. 89–92, 2012.

[5] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-proving,”
Communications of the ACM, vol. 5, no. 7, pp. 394–397, 1962.

[6] J. P. Marques-Silva, K. Sakallah, et al., “GRASP: A search algorithm for propositional
satisfiability,” IEEE Transactions on Computers, vol. 48, no. 5, pp. 506–521, 1999.

[7] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS press, 2009.

[8] Y. Vizel, G. Weissenbacher, and S. Malik, “Boolean satisfiability solvers and their
applications in model checking,” Proceedings of the IEEE, vol. 103, no. 11, pp. 2021–
2035, 2015.

[9] G. Tseitin, “On the complexity of derivation in propositional calculus,” in Automation
of Reasoning, Symbolic Computation, pp. 466–483, Springer, 1983.

[10] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form translation,”
Journal of Symbolic Computation, vol. 2, no. 3, pp. 293–304, 1986.

[11] A. Church, “A note on the Entscheidungsproblem,” The Journal of Symbolic Logic,
vol. 1, no. 1, pp. 40–41, 1936.

[12] A. M. Turing, “On computable numbers, with an application to the Entschei-
dungsproblem,” Journal of Math, vol. 58, pp. 345–363, 1936.

[13] R. Stansifer, “Presburger’s article on integer arithmetic: Remarks and translation,”
tech. rep., Cornell University, 1984.

Bibliography 94

[14] K. Gödel, “Über formal unentscheidbare sätze der principia mathematica und ver-
wandter systeme I,” Monatshefte für mathematik und physik, vol. 38, no. 1, pp. 173–
198, 1931.

[15] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons, 1998.

[16] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability modulo
theories,” in Handbook of satisfiability, vol. 185 of Frontiers in Artificial Intelligence
and Applications, ch. 26, pp. 825–885, IOS press, 2009.

[17] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding equality formulas by
small domains instantiations,” in Computer Aided Verification, vol. 1633 of Lecture
Notes in Computer Science, pp. 455–469, Springer, 1999.

[18] R. Sebastiani, “Lazy satisfiability modulo theories,” Journal on Satisfiability, Boolean
Modeling and Computation, vol. 3, pp. 141–224, 2007.

[19] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduction and ap-
plications,” Communications of the ACM, vol. 54, no. 9, pp. 69–77, 2011.

[20] G. Nelson and D. C. Oppen, “Simplification by cooperating decision procedures,”
ACM Transactions on Programming Languages and Systems, vol. 1, no. 2, pp. 245–
257, 1979.

[21] K. McMillan, “Applications of Craig interpolants in model checking,” in Tools and
Algorithms for the Construction and Analysis of Systems, vol. 3440 of Lecture Notes
in Computer Science, pp. 1–12, Springer, 2005.

[22] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory,” The Journal of Symbolic Logic, vol. 22, no. 03, pp. 269–285, 1957.

[23] G. Huang, “Constructing Craig interpolation formulas,” in Computing and Combina-
torics, vol. 959 of Lecture Notes in Computer Science, pp. 181–190, Springer, 1995.

[24] A. Cimatti, A. Griggio, and R. Sebastiani, “Efficient generation of Craig interpolants
in satisfiability modulo theories,” ACM Transactions on Computational Logic, vol. 12,
no. 1, pp. 7:1–7:54, 2010.

[25] Y. Vizel and O. Grumberg, “Interpolation-sequence based model checking,” in Formal
Methods in Computer-Aided Design, pp. 1–8, IEEE, 2009.

[26] S. A. Kripke, “Semantical analysis of modal logic i normal modal propositional cal-
culi,” Mathematical Logic Quarterly, vol. 9, no. 5-6, pp. 67–96, 1963.

[27] L. Lamport, “Sometime is sometimes not never: On the temporal logic of programs,”
in Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 174–185, ACM, 1980.

Bibliography 95

[28] E. A. Emerson and J. Y. Halpern, ““Sometimes” and “not never” revisited: On
branching versus linear time temporal logic,” Journal of the ACM, vol. 33, no. 1,
pp. 151–178, 1986.

[29] E. Clarke, “The birth of model checking,” in 25 Years of Model Checking, vol. 5000
of Lecture Notes in Computer Science, pp. 1–26, Springer, 2008.

[30] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons
using branching-time temporal logic,” in Logics of Programs, vol. 131 of Lecture Notes
in Computer Science, pp. 52–71, Springer, 1982.

[31] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent systems in
CESAR,” in International Symposium on Programming, vol. 137 of Lecture Notes in
Computer Science, pp. 337–351, Springer, 1982.

[32] E. Clarke, S. Jha, Y. Lu, and H. Veith, “Tree-like counterexamples in model checking,”
in Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
pp. 19–29, IEEE, 2002.

[33] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press, 1999.

[34] P. Schnoebelen, “The complexity of temporal logic model checking,” Advances in
modal logic, vol. 4, no. 35, pp. 393–436, 2002.

[35] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,” in Logics for
Concurrency, vol. 1043 of Lecture Notes in Computer Science, pp. 238–266, Springer,
1996.

[36] D. Peled, “All from one, one for all: On model checking using representatives,” in
Computer Aided Verification, vol. 697 of Lecture Notes in Computer Science, pp. 409–
423, Springer, 1993.

[37] P. Godefroid, D. Peled, and M. Staskauskas, “Using partial-order methods in the
formal validation of industrial concurrent programs,” IEEE Transactions on Software
Engineering, vol. 22, no. 7, pp. 496–507, 1996.

[38] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang, “Symbolic
model checking: 1020 states and beyond,” in Proceedings of the 5th Annual IEEE
Symposium on Logic in Computer Science, pp. 428–439, IEEE, 1990.

[39] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
Transactions on Computers, vol. 100, no. 8, pp. 677–691, 1986.

[40] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without
BDDs,” in Tools and Algorithms for the Construction and Analysis of Systems,
vol. 1579 of Lecture Notes in Computer Science, pp. 193–207, Springer, 1999.

Bibliography 96

[41] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,” ACM
Transactions on Programming Languages and Systems, vol. 16, no. 5, pp. 1512–1542,
1994.

[42] W. Lee, A. Pardo, J.-Y. Jang, G. Hachtel, and F. Somenzi, “Tearing based auto-
matic abstraction for CTL model checking,” in Proceedings of the 1996 IEEE/ACM
International Conference on Computer-aided Design, pp. 76–81, IEEE, 1997.

[43] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pp. 238–252, ACM, 1977.

[44] G. Bruns and P. Godefroid, “Model checking partial state spaces with 3-valued tem-
poral logics,” in Computer Aided Verification, vol. 1633 of Lecture Notes in Computer
Science, pp. 274–287, Springer, 1999.

[45] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided ab-
straction refinement,” in Computer Aided Verification, vol. 1855 of Lecture Notes in
Computer Science, pp. 154–169, Springer, 2000.

[46] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided ab-
straction refinement for symbolic model checking,” Journal of the ACM, vol. 50, no. 5,
pp. 752–794, 2003.

[47] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,” in Com-
puter Aided Verification, vol. 1254 of Lecture Notes in Computer Science, pp. 72–83,
Springer, 1997.

[48] E. Ermis, J. Hoenicke, and A. Podelski, “Splitting via interpolants,” in Verification,
Model Checking, and Abstract Interpretation, vol. 7148 of Lecture Notes in Computer
Science, pp. 186–201, Springer, 2012.

[49] M. Leucker, G. Markin, and M. Neuhäußer, “A new refinement strategy for CEGAR-
based industrial model checking,” in Hardware and Software: Verification and Test-
ing, vol. 9434 of Lecture Notes in Computer Science, pp. 155–170, Springer, 2015.

[50] E. M. Clarke, A. Gupta, and O. Strichman, “SAT-based counterexample-guided ab-
straction refinement,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 7, pp. 1113–1123, 2004.

[51] D. Beyer and S. Löwe, “Explicit-state software model checking based on CEGAR
and interpolation,” in Fundamental Approaches to Software Engineering, vol. 7793 of
Lecture Notes in Computer Science, pp. 146–162, Springer, 2013.

[52] C. Tian, Z. Duan, and Z. Duan, “Making CEGAR more efficient in software model
checking,” IEEE Transactions on Software Engineering, vol. 40, no. 12, pp. 1206–
1223, 2014.

Bibliography 97

[53] Y. Vizel, O. Grumberg, and S. Shoham, “Intertwined forward-backward reachabil-
ity analysis using interpolants,” in Tools and Algorithms for the Construction and
Analysis of Systems, vol. 7795 of Lecture Notes in Computer Science, pp. 308–323,
Springer, 2013.

[54] D. Beyer, M. Dangl, and P. Wendler, “Combining k-induction with continuously-
refined invariants,” arXiv preprint arXiv:1502.00096, 2015.

[55] K. L. McMillan, “Lazy abstraction with interpolants,” in Computer Aided Verifica-
tion, vol. 4144 of Lecture Notes in Computer Science, pp. 123–136, Springer, 2006.

[56] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and
M. Theobald, “Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems,” International Journal of Foundations of Computer Science,
vol. 14, no. 4, pp. 583–604, 2003.

[57] A. Hajdu, A. Vörös, and T. Bartha, “New search strategies for the Petri net CEGAR
approach,” in Application and Theory of Petri Nets and Concurrency, vol. 9115 of
Lecture Notes in Computer Science, pp. 309–328, Springer, 2015.

[58] A. Gmeiner, I. Konnov, U. Schmid, H. Veith, and J. Widder, “Tutorial on parame-
terized model checking of fault-tolerant distributed algorithms,” in Formal Methods
for Executable Software Models, vol. 8483 of Lecture Notes in Computer Science,
pp. 122–171, Springer, 2014.

[59] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction,” in Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 58–70, ACM, 2002.

[60] M. Weiser, “Program slicing,” in Proceedings of the 5th International Conference on
Software Engineering, pp. 439–449, IEEE, 1981.

[61] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim, “Slicing abstractions,”
in International Symposium on Fundamentals of Software Engineering, vol. 4767 of
Lecture Notes in Computer Science, pp. 17–32, Springer, 2007.

[62] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstractions from
proofs,” in Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pp. 232–244, ACM, 2004.

[63] D. Beyer, S. Löwe, and P. Wendler, “Sliced path prefixes: An effective method to
enable refinement selection,” in Formal Techniques for Distributed Objects, Compo-
nents, and Systems, vol. 9039 of Lecture Notes in Computer Science, pp. 228–243,
Springer, 2015.

[64] K. L. McMillan, Symbolic Model Checking. Kluwer Academic Publishers, 1993.

Bibliography 98

[65] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Data structures for
disjoint sets,” in Introduction to Algorithms, ch. 21, pp. 498–524, MIT press, 2001.

[66] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani, “The MathSAT5 SMT
solver,” in Tools and Algorithms for the Construction and Analysis of Systems,
vol. 7795 of Lecture Notes in Computer Science, pp. 93–107, Springer, 2013.

[67] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and Algorithms
for the Construction and Analysis of Systems, vol. 4963 of Lecture Notes in Computer
Science, pp. 337–340, Springer, 2008.

[68] J. Christ, J. Hoenicke, and A. Nutz, “SMTInterpol: An interpolating SMT solver,” in
Model Checking Software, vol. 7385 of Lecture Notes in Computer Science, pp. 248–
254, Springer, 2012.

[69] C. Barrett, M. Deters, L. de Moura, A. Oliveras, and A. Stump, “6 years of SMT-
COMP,” Journal of Automated Reasoning, vol. 50, no. 3, pp. 243–277, 2013.

[70] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Elements of
reusable object-oriented software. Pearson Education, 1994.

[71] B. Fernández Adiego, D. Darvas, E. Blanco Viñuela, J.-C. Tournier, S. Bliudze, J. O.
Blech, and V. M. González Suárez, “Applying model checking to industrial-sized PLC
programs,” IEEE Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1400–
1410, 2015.

[72] D. Darvas, B. Fernández Adiego, A. Vörös, T. Bartha, E. Blanco Viñuela, and V. M.
González Suárez, “Formal verification of complex properties on PLC programs,” in
Formal Techniques for Distributed Objects, Components, and Systems, vol. 8461 of
Lecture Notes in Computer Science, pp. 284–299, Springer, 2014.

[73] B. Dutertre, M. Sorea, et al., “Timed systems in SAL,” tech. rep., SRI International,
Computer Science Laboratory, 2004.

99

Appendix

A.1 Notations

⊥ False (page 10)
⊤ True (page 10)
a, b, c FOL constants (page 14)
αI Assignment of an interpretation (page 15)
α, β Formulas for interpolation (page 19)
A Atomic propositions (page 20)
A Universal path quantifier (page 24)
A Axioms of a first order theory (page 16)
atoms Atomic subformulas (page 43)
d, e Elements of a domain (page 21)
DI Domain of an interpretation (page 15)
Dv Domain of a variable (page 21)
E Existential path quantifier (page 24)
en Encoding function (Tseitin transf.) (page 13)
f, g, h FOL functions (page 14)
F Future operator (page 24)
FC Formula cluster (page 43)
G Globally operator (page 24)
h Abstraction function (page 38)
h−1 Concretization function (page 38)
I Set of initial states (page 20)
Î Set of abstract initial states (page 38)
I Interpolant (page 19)
I Interpretation (page 11)
Init Initial condition formula (page 21)
Inv Invariant formula (page 21)
L Labeling function (page 20)
L̂ Abstract labeling function (page 38)
M Kripke structure (page 20)
M̂ Abstract Kripke structure (page 38)
N Node (of a tree) (page 45)

100

p, q, r FOL predicates (page 14)
P,Q Propositional variables (page 10)
P Set of FOL predicates (page 56)
ϕ,ψ Formulas (page 10)
π Path (page 21)
π̂ Abstract path (page 39)
proj Projection function (page 51)
R Set of transitions (page 20)
R̂ Set of abstract transitions (page 38)
rep Representative function (Tseitin transf.) (page 13)
s, t States (page 21)
ŝ, t̂ Abstract states (page 38)
S Set of states (page 20)
Ŝ Set of abstract states (page 38)
SB Set of bad states (page 50)
SD Set of dead-end states (page 50)
SI Set of irrelevant states (page 50)
Σ Signature of a first order theory (page 16)
T Symbolic transition system (page 21)
T First order theory (page 16)
Tran Transition formula (page 21)
U Until operator (page 24)
v Variable of a symbolic transition system (page 21)
V Set of variables (page 21)
VE Set of explicitly tracked variables (page 56)
VI Set of invisible variables (page 53)
VV Set of visible variables (page 53)
var Variables of a formula (page 43)
VC Variable cluster (page 43)
x, y, z FOL variables (page 14)
X Next state operator (page 24)

101

A.2 Abbreviations

BMC Bounded Model Checking

CDCL Conflict-Driven Clause Learning

CEGAR Counterexample-Guided Abstraction Refinement

CERN European Organization for Nuclear Research

CFA Control Flow Automaton

CLI Command Line Interface

CNF Conjunctive Normal Form

CTL Computational Tree Logic

DPLL Davis-Putnam-Logemann-Loveland algorithm

FOL First Order Logic

GUI Graphical User Interface

LTL Linear Temporal Logic

NNF Negation Normal Form

PL Propositional Logic

PLC Programmable Logic Controller

ROBDD Reduced Ordered Binary Decision Diagram

SAT Boolean satisfiability problem

SMT Satisfiability Modulo Theories

TTMC Timed Transition Model Checker

102

A.3 Index

abstraction
composite, 43
existential, 37
function, 38
lazy, 35, 63
predicate, 33, 45
refinement, 40

ACTL*, 24, 39
appropriateness, 39
approximation

over, 31
under, 31

assignment, 15
atom

first order, 14
propositional, 11

atomic proposition, 20
axiom, 16

CEGAR, 32
CFA, 34
clause, 11
closure, 15
complete theory, 16
computation tree, 21
concretization

function, 38
path, 39

conjunction, 11
connective, 10
constant, 14
counterexample, 27

spurious, 40
CTL, 25
CTL*, 24

decidable theory, 16
disjunction, 11
domain, 15, 21

ECTL*, 24
equality (theory), 16

equisatisfiability, 13
equivalence, 12

first order
logic, 14
theory, 16

formula
Σ, 16
closed, 15
cluster, 43
first order, 14
propositional, 10

function, 14
encoding, 13
representative, 13

if and only if, 11
implication, 11, 12
interpolant

Craig, 19, 55, 62
sequence, 19, 64

interpretation
first order, 15
propositional, 11

invariant, 21
inductive, 33

Kripke structure, 20
abstract, 38

literal
first order, 14
propositional, 11

LTL, 25

model checking
abstraction-based, 31
bounded, 30
explicit, 29
incremental, 66
partial order reduction, 30
problem, 27
symbolic, 30

negation, 11

103

normal form, 12
conjunctive, 13
negation, 12

path, 21
PLC, 83
PolyRefine, 51
predicate, 14
Presburger arithmetic, 17
propositional logic, 10

quantifier
existential, 14
path, 24
universal, 14

rationals (theory), 17
ROBDD, 30

safety property, 26
SAT problem, 12
satisfiability

first order, 16
propositional, 11

signature, 16
SMT problem, 18
state

bad, 50, 62
dead-end, 50
failure, 49, 61
irrelevant, 50

subformula, 11
symbolic transition system, 21

temporal operator, 24
term, 14
transition

relation, 21
system, 20

truth symbol, 10
Tseitin transformation, 13

unfolding, 49
unsat core, 35

validity
T , 16
first order, 16
propositional, 11

variable
bound, 14
cluster, 43
explicitly tracked, 56
first order, 14
free, 14
invisible, 33, 53
propositional, 10
quantified, 14
scope, 14
visible, 33, 53

	Kivonat
	Abstract
	Introduction
	Background
	Mathematical logic
	Propositional logic
	First order logic
	First order theories
	Interpolation

	Modeling formalisms
	Kripke structures
	Symbolic transition systems

	Temporal logic
	CTL*
	CTL
	LTL
	Expressive power of temporal logics
	Safety properties

	Model checking

	Related work
	Model checking approaches
	Explicit model checking
	Partial order reduction
	Symbolic model checking
	Bounded model checking
	Abstraction-based model checking

	CEGAR-based model checking
	Abstraction types
	Modeling formalisms
	Combining with other techniques
	Tools

	Counterexample-Guided Abstraction Refinement
	A generic CEGAR framework
	Existential abstraction
	The CEGAR loop

	Clustered CEGAR
	Initial abstraction
	Model checking
	Concretizing the counterexample
	Abstraction refinement

	Visibility-based CEGAR
	Initial abstraction
	Model checking
	Concretizing the counterexample
	Abstraction refinement

	Interpolating CEGAR
	Initial abstraction
	Model checking
	Concretizing the counterexample
	Abstraction refinement
	Optimization: incremental model checking

	Summary

	Implementation
	Architecture
	TTMC framework
	CEGAR core
	CEGAR algorithms
	Usage

	Evaluation
	Simple finite state space models
	CERN PLC models
	Fischer's protocol
	Profiling
	Summary

	Conclusion
	Acknowledgment
	List of figures
	List of tables
	Bibliography
	Appendix
	Notations
	Abbreviations
	Index

