PrivacyCAT: Privacy-Aware Code Analysis at Scale

Ke Mao Cons T Ahs
Meta Meta
London, UK London, UK

kemao@meta.com cons@meta.com

Nick Gardner Radu Grigore
Meta Meta
London, UK London, UK

nikgardner@meta.com rgrigore@meta.com

Timotej Kapus Matteo Marescotti
Meta Meta
London, UK London, UK
kapust@meta.com mmatteo@meta.com

Abstract

Static and dynamic code analyses have been widely adopted
in industry to enhance software reliability, security, and per-
formance by automatically detecting bugs in the code. In this
paper, we introduce PrivacYCAT!, a code analysis system
developed and deployed at WhatsApp to protect user privacy.
PrivacYCAT automatically detects privacy defects in code
at early stages (before reaching production and affecting
users), and therefore, it prevents such vulnerabilities from
evolving into privacy incidents. PRivacYyCAT comprises of a
collection of static and dynamic taint analysers.

We report on the technical development of PRivacyCAT
and the results of two years of its large-scale industrial de-
ployment at WhatsApp. We present our experience in de-
signing its system architecture, and continuous integration
process. We discuss the unique challenges encountered in
developing and deploying such kind of analyses within an
industrial context.

Since its deployment in 2021, PRIVACYCAT has safeguarded
data privacy in 74% of privacy site events (SEVs). It has pre-
vented 493 potential privacy SEVs from being introduced

! Authors after the first author are in alphabetical order, which is not in-
tended to denote any information about the relative contribution. All of Per
Gustafsson’s contribution to this work was conducted at Meta.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEIP °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0501-4/24/04...$15.00
https://doi.org/10.1145/3639477.3639742

Gabriela Cunha Sampaio

gabrielasampaio@meta.com

Sopot Cela Dino Distefano
Meta Meta UK and Queen Mary
London, UK University of London
scela@meta.com ddino@meta.com

Per Gustafsson Akos Hajdu
Meta Meta
London, UK London, UK

pergu@meta.com akoshajdu@meta.com

Thibault Suzanne
Meta Meta

London, UK London, UK

tsuzanne@meta.com

into the codebases, enabling developers to maintain a high
privacy standard for the code that supports over two billion
WhatsApp users.

CCS Concepts: « Software and its engineering — Soft-
ware verification and validation.

Keywords: program analysis, dynamic analysis, static anal-
ysis, privacy

ACM Reference Format:

Ke Mao, Cons T Ahs, Sopot Cela, Dino Distefano, Nick Gardner,
Radu Grigore, Per Gustafsson, Akos Hajdu, Timotej Kapus, Mat-
teo Marescotti, Gabriela Cunha Sampaio, and Thibault Suzanne.
2024. PrivacyCAT: Privacy-Aware Code Analysis at Scale. In 46th
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP °24), April 14-20, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3639477.
3639742

1 Introduction

WhatsApp is a messaging app developed at Meta. With over
two billion users in more than 180 countries, it is one of the
most popular apps in the world. User privacy is a fundamen-
tal value embedded in WhatsApp’s DNA. Notably WhatsApp
provides end-to-end encrypted messages, audio, and video
calls.

In this paper, we introduce PrRivAcYCAT, an automatic tool
developed at WhatsApp that is used internally to detect pos-
sible privacy vulnerabilities in the code as a layer of privacy
protection, in addition to privacy by design (e.g., end-to-
end encryption). This helps programmers ship more robust
code from the privacy point of view. The name PrivacyCAT
stands for Privacy-Aware Code Analysis Tools. PRivacYCAT
in this work refers to a single privacy risk detection sys-
tem composed of multiple dynamic and static analyzers. It
aims to find privacy vulnerabilities in WhatsApp code early
in the development cycle, and report them to developers
through a unified channel for fixes before the code reaches

https://doi.org/10.1145/3639477.3639742
https://doi.org/10.1145/3639477.3639742
https://doi.org/10.1145/3639477.3639742

ICSE-SEIP ’24, April 14-20, 2024, Lisbon, Portugal

production, and consequently affects users. PRivacYCAT per-
forms dynamic taint analysis based on synthesized, realistic
user inputs and traffic generation (via tests, Sapienz [1] and
FAUSTA [26]), and static taint analysis based on Infer [8]. It
traces the propagation of synthesized sensitive data, and its
processing at data sinks and exchanging APIs for leakage de-
tection. PRIvacYCAT is designed to run on both WhatsApp
client and server code changes in order to prevent the in-
troduction of privacy violations into the code. Moreover, it
performs hourly scans of the codebases to search for possible
privacy defects hidden in the code. By detecting potential
privacy leaks before the code is deployed in production, it
helps protect WhatsApp users’ privacy.

We evaluated PrivacYCAT’s performance based on two-
year long deployment at three large codebases at WhatsApp.
The datasets cover both client and server sides’ daily changes
from developers. Our findings show that PrRivacyCAT is
effective in revealing privacy risks and preventing privacy
incidents at an early stage.

This paper makes the following main contributions:

It introduces the use of privacy-oriented code analy-

sis technology at scale in the software development

process. We present the system design of PRivacYCAT,
including both dynamic and static analyses. We showcase
the integration, deployment, and maintenance of Privacy-

CAT to support developers’ daily work at a large scale for

the purpose of automating user privacy protection.

e We report on the privacy use-case for code analysis.
Previous related studies were conducted on apps from
app stores without deployments under industrial contexts
[14]. We report on our deployments where real privacy
risks were detected, confirmed and fixed by developers.
This provides empirical data from an industry perspective
under the context of large-scale code-bases.

e We discuss the challenges we faced during two years

of PrivacyCAT application at WhatsApp. Similar chal-

lenges may provide directions for future research and push
the boundaries of the code analysis techniques and their
applications at industry.

The rest of this paper is organized as follows: Section 2
presents background information on taint analysis. Section 3
and 4 describe the dynamic and static analysis approaches
of PR1vacYCAT. Section 5 demonstrates how PrRivacyCAT
was integrated and deployed into continuous integration.
Section 6 evaluates the performance of PrivacyCAT with
industrial empirical data. Section 7 summarizes previous
code analysis studies for privacy. Finally Section 8 concludes.

2 Background

In this section, we present background information on taint
analyses that empower PRivaAcYCAT and give an overview
of the WhatsApp systems that are the focus of our analysis.

K. Mao et al.

Taint Analysis. Taint analysis is a program analysis tech-
nique used to analyze properties of code related to a variety
of use cases such as: security analysis [30, 31, 36], software
testing and debugging [6, 29]. In our setting, taint analysis
performs a dataflow analysis trying to establish that

no sensitive data flows exist from any source to
any sink, for a given set of sources and sinks.

We apply taint analysis in PRivacYCAT to detect privacy
leaks. We track (artificially generated) Personally Identifiable
Information (PII) and check that they do not reach (i.e., flow
into) sinks. In our case, a sink could be a database where the
storage of PII is prohibited or endpoints where data transfer
should be restricted.

System Under Analysis. The goal of PRivacYCAT is to
find privacy issues in WhatsApp as early as possible (i.e.,
shift-left privacy protection). From PRivacyCAT’s perspec-
tive, WhatsApp code can be classified into three categories:

e WhatsApp Clients are various apps and other surfaces
through which people experience WhatsApp. These are
written in languages specific for the platform, for exam-
ple Java/Kotlin for Android, Objective-C/Swift for iOS or
JavaScript for Web. In this paper we only consider Android
and iOS clients.

e WhatsApp Server is mainly written in Erlang and respon-
sible for routing messages between clients. For some ad-
vanced features such as integrity, WhatsApp Server talks
to other services via a RPC protocol.

o WhatsApp Services that are written as standalone services
supporting advanced features of WhatsApp such as in-
tegrity checks and business features.

Due to the variety of systems we aim to cover, PRIvACYCAT
is not a single analysis, but a collection of analyses (§3-4)
sharing the same goal of finding privacy issues with a shared
reporting pipeline (§5).

Dataflow Properties. PRIvACYCAT checks privacy poli-
cies that we were able to translate into dataflow problems.
An example property we check is a message-pair log-
ging. We've translated this into a dataflow requirement of:
“Two distinct values tagged as phone numbers do not end
up in a logging sink together”. Other policies are of the form
“certain sources do not end up in specific sinks”. For sources
we keep a set of fields we consider sensitive, these include
but aren’t limited to: phone number, input text, GPS loca-
tion, payment information, locale and others. For sinks we
consider various logging frameworks and database systems
used by WhatsApp.

3 Dynamic Analysis

Overview. PRivacYCAT dynamic taint analysis consists of
two components: 1) a way of exercising WhatsApp code; 2) a
way of detecting a flow of data. For 1) we use FAUSTA traffic
generation [26] for server code and Sapienz [1, 25] for client

PrivacyCAT: Privacy-Aware Code Analysis at Scale

ICSE-SEIP °24, April 14-20, 2024, Lisbon, Portugal

PrivacyCAT PrivacyCAT PlI/Sink/Policy PrivacyCAT PrivacyCAT Taint
Tainter Instrumentation Configs Detectors Tracer
e T
~
FAUSTA FAUSTA WA Server
Generator Replayer Sandbox
@ Service Instrumented
Sandbox Data Sinks
S) Traffic
Client Apps e
E2E Tests Redirection
Client-to-server (c2s) Server-to-server (s2s)

Figure 1. An Overview of PRIvAcYCAT Dynamic Analysis

code, we also use pre-existing tests authored by developers,
for both client and server. For detecting dataflows we use
two methods: a light-weight coarse taint analysis, that does
not track how the data propagates and a finer taint analysis
that does. The different components can be combined, but
we have not deployed all combinations.

Coarse Taint Analysis. Coarse taint analysis is a simple
substring check of tainted values in a sink. In other words, we
"grep" for sources (that we generated) in sinks. This means
that coarse taint analysis only knows if the tainted data ended
up in the sink, but not what paths it took to get there. In addi-
tion, it cannot detect tainted data that has been transformed.
However, due to the simplicity and ease of deployment we
have found this analysis to be very effective.

First, we explain how coarse taint analysis implemented
with tests: We have manually changed commonly used test-
ing APIs for getting test users to write what would be PII val-
ues — such as phone numbers - into a file, called sources.
We have instrumented the code to write all data going to
sinks into another file called sinks. After the tests are done
running, PRIvacYCAT checks the sinks file for any values
that are present in the sources file.

Second, FAUSTA [26] is a traffic generation system which
has been deployed at WhatsApp for analysis of reliability
issues such as crashes. To summarise, FAUSTA’s [26] traf-
fic data generators materialize server inputs (called stanzas)
based on specs, and send them to the server. PRIVACYCAT
extends this materialization process to taint some of the
data, based on the annotations for the specs. In addition it
instruments the server using the same instrumentation as
tests. Such instrumentation enables profiling on coverage,
stack trace and tracing of tainted values. The code under
analysis runs in a non-production, controlled environment
to prevent the instrumentation from introducing any side
effects to production.

The server is instrumented by an Erlang parse transform,
that takes a list of functions as input, which are considered
sinks to be instrumented. It then injects code at the start of
these functions to write all arguments as well as the current
stack trace into a file. This sinks file is later checked by
PrivacyCAT.

For example, given a function foo in foo.erl, which
concatenates its two arguments and calls bar:

foo (A, B) —>
bar (A ++ B).

It would get rewritten into a function shown below. The
instrumentation adds a call to write the two arguments into
a file. In addition, current callstack and source location are
also written to the file. This enables us to localise issues
found back to code, making it easier to report. Note that the
code below is shortened for brevity.

foo (A, B) —>
file:write_file(
"/tmp/sinks",
"A:~p_B:~p,CallStack:~p_Src:~p~n",
[
A,
B,
erlang:process_info(self()),
"foo.erl:2"
1
)
bar (A ++ B).

Lastly, Sapienz [1, 25] is a client side search-based testing
tool that automatically explores the client UL PRivacyCAT
uses Sapienz to exercise Android and iOS client code in a
testing environment. Sapienz uses a framework to login into
the app with test users. We record sensitive attributes of
these test users as sources, such as their phone numbers
and profile names. In addition, we record any texts Sapienz
types into the Ul as an "input text" source. We use this input
text source as an over approximation for "message content"
source. For sinks we use Logcat in Android and app logs
in iOS, as well as manually patched-in instrumentation for
WhatsApp specific sinks.

Finer Taint Analysis. Finer Taint Analysis is our dy-
namic taint analysis for Erlang. It aims to detect the flow of
data from sources to sinks through data transformations and
report steps on how the data got there. It is our implemen-
tation of Karim et.al [20] taint analysis for Erlang. Detailed
exposition of this analysis is beyond the scope of this paper,
below we give a brief outline:

ICSE-SEIP ’24, April 14-20, 2024, Lisbon, Portuga

Their idea is to shadow the real execution by an execu-
tion of an abstract-machine operating on taint values. The
analysis is performed in three steps:

1. Instrument the program under analysis with instrumen-
tation that emits instructions (via a side channel) for the
abstract machine.

2. Run the program under analysis. This results in a trace
of the execution in the form of a sequence of instructions
for the abstract machine.

3. Execute the emitted instructions on the abstract machine
to get the taint analysis result.

To implement the analysis proposed by Karim et.al [20]
in Erlang, we have built a parse transform that traverses the
Erlang Abstract Syntax Tree (AST) and inserts instruction
emitters for the taint abstract machine between expressions
in the bodies of Erlang abstract forms. These instruction
emitters write instructions for the abstract machine to a file,
during execution of the code under analysis. The emitters
are inserted in such a way to represent the effect of the Er-
lang expressions would have on the taint value. Additionally,
we have implemented the abstract machine itself in Erlang,
which executes the emitted instructions.

Karim et al’s JavaScript implementation [20] is single-
threaded. We have extended their approach to support par-
allelism by leveraging the inherent parallelism of Erlang. In
Erlang, each process runs independently and only communi-
cates via message passing. Therefore, we can run one taint
abstract machine per process and only need to handle mes-
sage passing. Since in our implementation of the abstract
machine is also in Erlang, we made it pass "taint" messages
between each other.

Cross-repo Analysis. PRivAcYCAT dynamic analysis also
performs end-to-end analysis to detect privacy leakages that
may occur across multiple systems. Specifically, the interop
analysis detects privacy leakages in the presence of data ex-
changes, such as Client-to-Server (C2S) and Server-to-Server
(525), as demonstrated by Fig. 1. The end-to-end analysis
connects the full pipeline and targets use cases that depend
on other internal services.

The C2S interop analysis is based on dynamic tracing with
input generation for both client and server, as described
above. For interop analysis, PRIVACYCAT redirects Sapienz
client traffic to WhatsApp Server sandboxes. This can be
seen as the merge of Sapienz and FAUSTA driven analysis
described before.

For S2S, PrivacYCAT uses a combination of client and
server traffic to trigger interop code paths, such as fetching
a business user profile stored by another heterogeneous ser-
vice. $25 is an extension of C2S interop analysis where in
addition to connecting client to WhatsApp server sandbox, it
also connects the WhatsApp server sandbox to another het-
erogeneous server sandbox. PRivacYCAT also instruments
the target sinks of cross-repo services.

K. Mao et al.

Finally, note that these solutions would be infeasible to
perform in a production environment mainly due to two
reasons:

e Using production data may lead to privacy concerns;
e Runtime checking in production would introduce a non-
trivial performance overhead to the system.

Instead, PRivacYCAT generates artificial sensitive and in-
sensitive inputs, and inject them into an isolated, controlled
sandbox environment where no user data is involved.

4 Static Analysis

Static taint analysis in PRIvAcYCAT refers to two distinct
extensions of Infer, specifically when used for detecting
dataflows. Infer [8, 12] is a general-purpose static-analysis
platform supporting multiple languages. The two extensions
of Infer that we developed are Topl and Lineage, which we
describe next. These extensions are currently only deployed
for WhatsApp server’s Erlang codebase, but we plan to ana-
lyze client code (that the dynamic analysis already covers)
in the future.

Topl. Topl [18] refers to both a language for specifying
user-defined properties, and the engine in Infer that checks
whether the property holds for a given program. Topl prop-
erties are expressed in terms of state machines and therefore
are well suited to monitor executions. Here is an example of
a typical taint property:

property Taint
start -> start: =
"source/0" (Ret) => data:=Ret
track -> error: "sink/1" (Arg, Ret) when Arg~~>
data

start -> track:

The state machine has three states: start, track, and
error. There is a non-deterministic loop transition in the
start state to be able to track multiple instances of tainted
data. Then, if we see a call to a function named source,
we store it’s return value in the data register of the state
machine and go to the t rack state. Finally, if we see a call
to function sink where the argument is a term containing
the term we stored in data, we report an error. Static Pri-
vacYCAT is currently deployed to check three similar, but
more complex properties where sources and sinks are de-
fined based on WhatsApp’s privacy policies and are a subset
of properties checked by dynamic analysis.

We check the same properties with both dynamic and
static analysis for several reasons. First, dynamic and static
analyses have different strengths: dynamic analysis only
explores real executions; static analysis can see executions
missed by dynamic analysis; dynamic analysis is easier to
extend to cover multi-language codebases, for example in-
cluding both a client and a server. Second, dynamic and static
analyses offer complementary diagnostic information: dy-
namic analysis offers a way to reproduce the problematic

PrivacyCAT: Privacy-Aware Code Analysis at Scale

execution and a stack trace at the violation time; static anal-
ysis offers a trace akin to stepping through the code, thus
covering several time moments, ending at violation time.

Under the hood Topl is built on top of Infer’s Pulse analysis,
which performs symbolic execution over the program. Topl
augments Pulse by defining a monitor based on the property
(state machine) and performing abstract interpretation over
both the program and the monitor.

Lineage. Topl is an analysis designed to find violations
of temporal properties, which we use mostly for finding
data-flows such as violation of taint properties. Lineage is
an analysis that we designed from the start with the goal
of detecting data-flows but no more. Thus, the analyses are
similar in what they achieve (detect dataflows) but differ in
some design decisions, which we discuss next.

Topl is based on symbolic execution, and thus underap-
proximates program semantics. In contrast, Lineage is based
on abstract interpretation and overapproximates program
semantics, which is the classic approach in static analysis. In
practice, this means that Topl has few false positives while
Lineage has few false negatives.”

Whereas Topl works by taking a property and a program
and analysing them both together, Lineage works in two
distinct phases, first taking only the code into account, and
then taking the source/sink query into account. The first
phase produces a graph view of the data-flow in the code.
The second phase performs a CFL-reachability (context free
language reachability) check, from the source to the sink, on
that graph.

Topl relies on Pulse’s sophisticated reasoning about values.
Lineage does not reason about values, and therefore cannot
see that certain data-flows cannot happen.

In short, Lineage is simple, fast, and has few false nega-
tives. For use-cases where it is important to have few false
negatives we use Lineage; for use-cases where it is important
to have few false-positives we use Topl.

Erlang support in Infer. Infer - including Topl and Lin-
eage - is language agnostic, meaning that it can analyze pro-
grams in different languages, modulo a language frontend
and some specialization needed to improve analysis preci-
sion. As part of PRivacYCAT, we added an Erlang frontend
to Infer (called InfERL [19]), and modeled Erlang’s built-in
data structures and a subset of library functions.

5 System Deployment

PrivacYCAT has been deployed at WhatsApp as a tool for
detecting privacy regressions as early as possible in the devel-
opment cycle and, most importantly, before the code reaches

%In theory Lineage being an over-approximation would not have false
negatives, and Topl being an under-approximation would not have false
positives. In reality when applied to real code any program analysis would
not be neither fully over-approximating nor fully under-approximating and
therefore it would have both false positives and false negatives.

ICSE-SEIP °24, April 14-20, 2024, Lisbon, Portugal

Determinator PrivacyCAT _|

Diff ""’—7‘D ic Taint Analysi L .
l i ynamic Taint Analysis Fault Prod || Owner |_| Signal
l Master F~§[Static Taint Analysis F? Localization Matching Attribution Boosting

Escalati
[Ecatton l Feedhack }(—-{ XAuthor }(—{Phabricator]<—
Fixes
Optional
Incident Filing :, XOncall l<—{ Task Tool I<—

Figure 2. Overview of PRivacYCAT’s Integration into CI

production. It is deployed as part of the continuous integra-
tion (CI) system and runs together with several other checks
of different nature and purposes (e.g. tests, linters, etc).

The deployment covers both server and client side code-
bases in various programming languages. At the time of
writing, the system deployment covers three large reposito-
ries: Erlang server, Android and iOS clients. Each of these
repositories contains several millions lines of code.

We started PRIVACYCAT deployment in the second quar-
ter of 2021 firstly with WhatsApp server repository to run
hourly against master branch. Later in third quarter of 2021,
we deployed it to run on every WhatsApp server code change
(called diff). Starting from 2022, we extended the system from
server to client repositories, covering both Android and iOS
platforms.

Shift-left deployments. Fig. 2 presents an overview of
PrivacYCAT’s CI integration for providing developers with
early signal (shift-left) about potential privacy issues in the
code. It is deployed to run against both master branches and
also every code change (a.k.a. diff) before these are commit-
ted in the codebase. The reason of this double deployment is
twofold:

i. Running PrivAcYCAT on diffs prevents new privacy issues
to land in the codebase.

ii. Running every hour on master cleans-up the code base
of lurking privacy issues, as well as catch leaks left unde-
tected by the diff analysis (e.g. two diffs are safe individu-
ally but merging them causes an issue).

When we look at these deployments from the SEV point
of view, diff analysis prevents incidents from happening as
SEV-worthy issues are caught before being landed in the
codebase. Such diff-time jobs are expected to have minimal
time-to-signal to help developers increase dev efficiency.
Fig. 3 shows that most PRivaAcYCAT dynamic and static anal-
ysis jobs could finish within 10 minutes, according to over
20k latest prod job samples. Note that PRIvAcYCAT’s time-
to-signal may take longer than the analysis jobs considering
other end-to-end overhead such as environment setup and
harness preparation. Continuous runs on master detect the
existence of privacy issues in the code base, open tasks that
are triaged to the owner of the code, and if the issue has been
confirmed with production volume (see below), a privacy
site event (also known as a SEV [13]) is filed.

Fault localization. Faultlocalization determines the code
location of the root cause of the vulnerability (some analyzers

ICSE-SEIP ’24, April 14-20, 2024, Lisbon, Portugal

=

& 37 49 53 5.8 7
2

=)

s .
2 15 557 73 10.8

Figure 3. PrivacyCAT diff-time job cost in minutes

also include a full execution or stack trace). This informa-
tion helps developers quickly locate the source of the issue,
and it also helps PrRivacyCAT to automatically deduplicate
issues and get the necessary context for matching against
production data.

Prod matching. One of the main problems with program
analysis is high false positive (FP) rate, that is warnings
reported by the analysis which cannot actually happen in
production. To attenuate the problem, or to decide if it’s
necessary to open a SEV, we have developed a system which
uses heuristics to match warnings reported by the analysis
with production data of the last 30 days. These heuristics are
based on analyzing the call site and its context in the source
code: we extract the constant parts of logging patterns (e.g.,
constant strings) and search for those in production data. For
example, from the context of log ("Error " + err +
" for data " + d) we would extract "Error " and
" for data ".This allows us to estimate the volume of
occurrences without relying on the actual data.

Depending on the volume of occurrences found in pro-
duction, we can add confidence to the privacy risk and file
a SEV at the proper level. Having such evidence allows us
to escalate the risk to be timely fixed. Note that in princi-
ple it would be possible to perform pattern-based detection
against production data for finding privacy leaks without
PrivacYCAT. But without taint analysis confirming sensitive
dataflows, this approach would suffer from high FPs rate.
Also, reporting issues already happening in production is
useful because PRivacYCAT provides traces for debugging,
and errors involving sequences of events can be hard to find
in logs.

Owner Attribution. Detected issues are attributed to
code owners automatically by PRivacyCAT. For diff-time sig-
nals, PRivacYCAT only reports issues related to the diff, thus
they can be attributed to the diff author directly. For analysis
of master, the attribution relies on the previous fault localiza-
tion step, which usually points to a root call site. When such
a call site is available with evidence from prod matching, a
task will be assigned to the author or oncall who owns the
call site. For the remaining cases, we assign to PRivacyCAT
oncall for a quick sanity check and triage.

K. Mao et al.

Interaction between static and dynamic analysis. We
can exploit the fact that we use both static and dynamic
analyses to improve results of the single analysis. The Topl
static analysis and the PRivacYCAT dynamic taint analysis
first produce two independent sets of issues. We then post-
process these issues to compute their intersection. Those
are the issues detected independently by both analyses and
we use this fact as a form of signal boosting. Signal boosting
consists of:

(a) providing the extra information found by both analyses
(e.g. additional traces); and

(b) raising the visibility of those issues because they are more
likely to be true positive.

6 Evaluation

In this section, we evaluate PRivacYCAT with data collected
during its deployment in a two-year period. We assess Pri-
vACYCAT privacy analysis by answering four questions:

o Q1: Does PRIVACYCAT analysis reveal any privacy vulnera-
bilities? Is the shift-left deployment improving privacy pro-
tection?

o Q2: What types of privacy vulnerabilities can be detected
with PRivacYCAT analysis?

o Q3: Do developers fix the reported privacy risks?

o (4: What are the challenges and experience learned from
the deployment?

6.1 Data Collection and Methodology

The evaluation considers a data set of PRIvacYCAT’s re-
sults between 2021Q1 and 2023Q2. It covers three major
WhatsApp code bases.

PrIvacYCAT analysis results were collected continuously,
from each of its CI job since deployment. These CI jobs were
triggered on every diff submitted by WhatsApp developers
to each of the server and Android client repositories®. We
also collected results of runs on master branches for server
and Android/iOS clients, which happens mostly once per
hour. The recorded results include details of vulnerability
types, description and corresponding code locations for both
diff-time signals and also tasks filed to code owners.

To understand the fix status on a diff, we have a contin-
uous job that compares the diff versions before and after
PrIvacYCAT reports in order to identify possible developer
fixes. To understand whether a task has been fixed we look at
the diffs attached to the task, plus we use a semi-automated
analysis checking developer comments and tag annotations
(e.g., we've instructed developers to tag false positive tasks
before closing them).

To evaluate the coverage of PRivacYCAT, we manually
tracked every privacy incidents in scope with the analysis
which happened in the past two years, including those dis-
covered and reported manually by developers at WhatsApp.

3The i0S client does not have PRivacyCAT diff-time analysis support yet.

PrivacyCAT: Privacy-Aware Code Analysis at Scale

Issues in PrRIvaAcYCAT’s scope regard leaking sensitive data,
while functional requirements (such as failing to display a
user notice) are out of scope.

6.2 Effectiveness

During the over two-year’s deployment period, PRIvacy-
CAT analysis reported in total 1,715 potential privacy issues
for early-stage improvements. Among all cases, 1,426 were
raised at diff-time, i.e., before changes were committed into
the source control repositories, and 470 were reported when
analyzing master branch (i.e., after diff commits) which were
automatically triaged to code owners.

Privacy SEVs reported. The most important issues, 26
of the reported cases, were escalated as privacy Site EVents
(SEVs). The SEV process ensures the reported incidents are es-
calated, mitigated, fixed, and retrospectively reviewed. Fig. 4
shows the privacy incidents detected by PRivaAcYCAT in the
server repository over the two years period. The graph com-
pares it with the overall detected incidents including those
discovered by human. We can observe that PRivacyCAT has
automatically detected 74% of all privacy incidents, while
company-wide developers reported the remaining 26%. This
indicates that PRIVACYCAT performed substantially better
than human on the task of detecting data leakage in the code.

Efficacy of Shift-left deployment. Now we assess whe-
ther the shift-left deployment of PrivacYCAT enhanced pri-
vacy protection. Due to the nature of the system and the
property checked by PrivacYCAT, the data-set may not be
statistically meaningful, however we can still observe some
interesting facts. Also note that, as for any program analysis,
PrivacYCAT’s warnings are potential privacy vulnerabilities
about sensitive data leakage, and therefore they do not im-
mediately mean there is a privacy policy violation effectively
happening. To confirm that a report is a true positive, Pri-
vACYCAT’s reporting pipeline employs the prod-matching
mechanism described in Section 5. Based on the matched
volume from prod, the code owners may prioritize their fixes
such as removing, redacting the sensitive data or limiting
the logging volume only for debugging purpose.

The linear trendline of all incidents in Fig. 4 demonstrates
that the shift-left practice led to fewer privacy incidents over
the two years deployment of PRivacYCAT. Fig. 5 shows the
trend of privacy incidents in repository overtime, and com-
pares it with the trend of fixed issues on master. We see that,
after the first quarter, PRIVACYCAT has filed in increasing
number of tasks which were fixed before becoming incidents.
See especially the gap between blue and black line in Q2 of
2022. The incident trend has been going down. Without
these filed tasks, which were fixed early, the incident num-
ber would have been much larger. In 2022, we observed 21%
less privacy incidents than 2021. In Q1 of 2023, no privacy
incidents were registered on the server code base. Hence
those graphs seem to support our intuition that detecting

ICSE-SEIP °24, April 14-20, 2024, Lisbon, Portugal

—O6— PrivacyCAT Reported
—=— All Incidents
---------- Trend of All Incidents

Count

%\Q‘\ v,\Q} m\O} %Q'D‘ m’Y»O’\ ﬁq'(b @03’ "ﬂ«Q’D‘ “&Q\ f«'@

Quarter
Figure 4. Privacy incidents reported by PrRivacyCAT and
human (Server Repo)

s T T T T T T T T]

—O©— Master Fixes
—&— All Incidents

20 |-

Count

1

m\Q‘\ v,\Qq' %\Q} 1\(2'& ﬁﬁ»o'\ ﬂQ‘{L ‘ﬂQ} 'ﬂQ‘D‘ 739\ 'L“’Q‘[L

| | | | | | |

Quarter
Figure 5. PRivAcYCAT master fixes and privacy incidents
(Server Repo)

privacy issues as early as possible can decrease the number
of incidents. This is important for user privacy, but there is
also another advantage. Early detection unlocks developer
velocity, because fixing a leak while writing a diff takes min-
utes, whereas closing an incident usually take days and may
involve several departments as stakeholders.

Fig. 6 shows incident-worthy issues detected and fixed at
diff time. Those represent potentially prevented incidents.
In total, it prevented 493 potential privacy SEVs to land on
WhatsApp codebases, Moreover, at some point in the graphs,
we observe issues detected at diff time (and also tasks as
shown in Fig. 5) decreased. This seems to correspond to
what it is called "true negatives" in this paper [24]. Basically,
over time, developers become more aware of code analysis
rules and learn how to avoid anti-patterns that break the
rule.

Effectiveness by analysis. Figure 7 shows the number of
errors found and reported broken down by different analysis

ICSE-SEIP ’24, April 14-20, 2024, Lisbon, Portugal

I I I
150 |- B —

—OE— Diff Fixed
—H&— Diff Reported

100 |~

Count

50 —

A & QY Y
o ¥ ¥ o

Month
Figure 6. Diff-time monthly reported and fixed vulnerabili-
ties (All Repos)

& o

:] 93 % Errors Found

&7
l

,\b@ []25
o 145
,QS | 1
& [4
& [8
[J10e
S |4
& l | 391

g Errors Reported

| 197

Figure 7. Unique errors found in a 30 day window

in a month. As a reminder, we do not report all issues the
tools find, due to various filters we have in place that are
described in Section 5 and discussed in Section 6.4. FAUSTA,
Server and Android Test, Finer Taint and Sapienz denote
the dynamic approaches described in Section 3, while Static
analysis is described in Section 4.

While static analysis found most issues, we reported only
four of them. This is due to our conservative filtering of false
positives. For the dynamic analysis FAUSTA traffic genera-
tion and Android tests find the most actionable issues. Finer
taint found only four issues, due to its limited deployment.

6.3 Vulnerability Types

At the time of writing, PRIvacYCAT is capable of catching
vulnerabilities in the following types to help ensure their
privacy principles:

Data Collection. Collected user data should follow the
data minimization and anonymization principles. PRIVACY-
CAT reports show that when developers perform data log-
ging, the logging sites are usually generic thus may unin-
tentionally persist sensitive data, such as PII. PRIvAcYCAT

K. Mao et al.

taint analysis identifies such cases of risky logging and help
developers avoid over-collection of data.

Data Sharing. Another type of risk is exchanging data
with other heterogeneous services. There are policies on how
data from WhatsApp can be exchanged with other services.
For a WhatsApp service A that communicates with service B,
we need to enforce both systems comply with each others pri-
vacy policies. From system A’s perspective, we break down
this problem into two sub problems: Handling incoming traf-
fic and outgoing traffic. Checking outgoing traffic is more
interesting for our use case. Our analysis inserts probes into
the lower level RPC APIs that performs the data exchange.
This instrumentation allows us to perform check of tainted
data for all outgoing traffic. When any tainted data is ob-
served at a sink, we also collect the call stack to help trace its
propagation. Our deployment shows that PRivacYCAT was
able to capture risky call sites that send synthesized sensitive
traffic to other internal endpoints. While these results may
not directly reveal true positive violations, they have pro-
vided us insights to help audit sensitive data consumption
and their persistence on the endpoint side.

Data Access Control. Sensitive data usually has restric-
tions on who can access it, how they can access, and what
operations they can perform on the data. Access Control Lists
(ACLs) is a common way to define user group permissions
including certain operations such as read, write, modify, or
delete. PRivacYCAT was able to detect the cases where data
sinks write sensitive data, but the target tables are missing
the necessary ACLs.

6.4 False Positive, False Negatives, and Fix Rate

Like any program analyses deployed for real code, PRIvACY-
CAT faces challenges in false negatives and false positives.
This section discusses the issues and our experience in tack-
ling them.

False negative. The privacy analysis use-case requires
high coverage on catching privacy violations, but it’s known
that the automated approach may miss certain types of re-
gressions. It’s challenging to achieve high coverage due to
both technical and non-technical reasons. For example, it’s
infeasible to cover every privacy policy in a large code base.
Also not every policy can be formalized or used as a pri-
vacy oracle. When tracking tainted traffic, it could miss re-
gressions due to deep states or prod environment that our
exploration would not cover.

Mitigation: For policy coverage, we collaborated with pri-
vacy experts in order to design policy oracles. To address
the limitations on dynamic analysis, we improved FAUSTA’s
generation strategies and infra efficiency for deeper explo-
ration. Moreover the combination with static analysis makes
our analysis more comprehensive. For static analysis, we
performed continuous improvements on translating policies

PrivacyCAT: Privacy-Aware Code Analysis at Scale

Reported | Fixed | Fix Rate | FP Rate
Diff 1,426 493 34.6% -
Master 470 152 32.3% 10.6%
Table 1. Diff and Master Signal Fix Rates (All Repos)

into Topl properties and improving analysis coverage for
Erlang syntactic categories.

False positive. False positive is a common issue for any
automated detection system. In the privacy use-case it may
arise due to:

1. Privacy regressions require human knowledge. For certain
cases, we may need policy experts’ support to confirm a
regression.

2. For early detection, we have to run the analysis in a non-
prod environment, which may report issues which will
not manifest in production.

Mitigation: We automated privacy policies that can be codi-
fied into our analysis (e.g. enforce data with access control).
Before we had proof that PRivacYCAT generates low level
of false positives (see Fix Rate section below), we had a semi-
automated system to review the reported issues ourselves.
After tuning and improving the analysis at a point where we
could confirm the low false positive rate, we shadowed the
signals in CI and rolled out gradually, mitigating therefore
the risk in providing a disruptive experience to WhatsApp
developers. We also found prod matching is very effective in
filtering out false positives caused by the differences between
production and testing environments. The prod volume is
also useful in deciding the signal severity to help code own-
ers prioritize fixing of the vulnerability.

Fix Rate. One main challenge to apply large-scale code
analysis techniques in industry is the potential low fix rates.
It’s widely reported that code analysis tools suffer from false
positives [7, 9].

Table 1 shows that PRivacYCAT’s diff-time fix rate is 34.6%
and master fix rate is 32.3%. We couldn’t find prior industrial
studies on detecting privacy vulnerability at large-scale to
perform fair benchmarking. However, if we do not restrict
to the privacy domain, PRivacYCAT fix rate is higher than
a related large-scale study on the usage of SonarQube [27],
which reported a fix rate of 13%. When compared with our
previous work on FAUSTA, PrivacYCAT scores lower on
diffs (FAUSTA has a fix rate of 74%) and it scores higher on
master where FAUSTA has a fix rate of 20%.

To measure PRIvACYCAT’s False Positive (FP) rate, we
asked developers to annotate the reported tasks if they are
false positive. With this method we found that false positive
rate is 10.6%. This meets developer needs (<15%-20%) as
suggested by the empirical study [9]. Given the relatively low
FP rate, one pertinent question to ask is why developers did
not fix the flagged risks. Based on developers’ feedback and
our investigation, we found the following two main reasons,
which indicate the ground truth of false positive rate is likely

ICSE-SEIP °24, April 14-20, 2024, Lisbon, Portugal

higher than the measured 10.6% based on explicit developer
feedback/annotations.

e Work in progress: some reported vulnerability tasks were
still in an open state, which may need non-trivial effort to
investigate. We found 33 tasks were in such a state at the
time of writing.

o Prior approvals: Developers sometimes acknowledged
PrivacYCAT reported signals, but they do not need fixes
due to expected code behaviors. For example, error path
logging may be classified as legit for the debugging pur-
pose. There are also exceptional cases previously reviewed
and approved by internal audits. Such prior knowledge
were usually unavailable in advance and hard to codify
in machine-readable properties. Although the signals are
worth reporting from PrRivaAcYCAT’s perspective, they
should not be classified as real policy violations.

6.5 Challenges

In this section we discuss a few challenges and their mitiga-
tion, based on the multi-year development, deployment and
maintenance of PRIvACYCAT.

Privacy in privacy analysis. One aspect we initially un-
derestimated is the importance of enforcing privacy when
performing the analysis itself. Some code analysis techniques
need to access production traffic or instrument production
code, which introduces privacy concerns on user data. Pri-
VACYCAT itself wouldn’t have been deployed, if it would
require changes to production code, or access user data.

Instead we designed and implement PRivacYCAT analysis
to be privacy-safe:

e it does not perform changes to production code and/or
environment; and
e it does not rely on user data at all.

PrR1vAcYCAT dynamic analysis simulates user traffic and
interactions with artificially generated inputs. It performs
most of its analysis in isolated, sandbox environments. This
makes PRIVACYCAT privacy-safe from the user point of view.

Codifying privacy policies. Previous research on mo-
bile app privacy mainly focused on detection approaches
rather than privacy requirements or policies [14]. In our
practice, similar to the test oracle problem, discovering pri-
vacy requirements and codify them into oracles is the key to
PrIvacYCAT’s success. The problem has been of primarily
importance for us to collaborate closely with WhatsApp de-
velopers. From them we learned domain knowledge about
product features. Moreover we collaborated closely with
privacy stakeholders to clarify the nuances of documented
policies in natural language. The latter process requires con-
tinuous iteration because precise machine-readable proper-
ties consumable by both static and dynamic analyses need
to be produced from informal policies expressed in natural
language. We also built a feedback loop to revise our existing

ICSE-SEIP ’24, April 14-20, 2024, Lisbon, Portugal

codified policies based on developer feedback, plus tracing
any missing privacy SEVs that PRIvAcYCAT policies missed
and should cover in the future.

7 Related Work

Static and dynamic code analysis techniques play a critical
role in helping developers build more reliable, performant,
secure, and private systems. In the past few decades, their
methodologies and applications have been widely studied,
for use cases such as identifying reliability errors, code smells,
performance, security and privacy risks. [10-12, 21, 22, 26].
In the privacy domain there is a wide body of academic
research. Most of this work has seen very limited application
or deployment in large-scale industry environments.

On the static analysis side approaches have been devel-
oped to analyze code structures, dependencies, and dataflows
to identify potential privacy vulnerabilities without execut-
ing the code.

Slavin et al. [33] propose a framework to detect privacy
policy violations in Android apps. The framework adopted
information flow analysis (implemented by the static taint-
analysis tool FlowDroid [5]) to detect misalignment between
documented policies and actual API behaviors on sensitive
data processing. PTPDroid [34] is built on top of FlowDroid,
and it checks for privacy policy violations related to 3rd
party disclosure. It uses a set of standard APIs as sources and
sinks (e.g., network calls).

Gibler et al. [17] present AndroidLeaks to statically find
privacy leaks, which they define as "any transfer of PII off
of the phone". They consider some permissions as sources
(i.e., location) and others as sinks (i.e., internet), then they
map permissions to API calls to get a lists of functions to
use as sources and sinks. AndroidLeaks performs flow-to
style static taint analysis for tracking private data between
sources and sinks. Their definition of privacy leak does not
attempt to distinguish between intended and unintended
leaks. Whereas our work focuses on finding only unintended
leaks that should be fixed. They only use static analysis for
android apps, while out approach uses multiple analysis
across different systems. We also report on integration into
CI and how developers reacted to the issues we found.

Egele et al. [15] introduce a system called PiOS for de-
tecting privacy threats that pose to iOS app users. PiOS
performs static data flow analysis in binary code compiled
from Objective-C source.

Zoncolan [23] is static taint analysis deployed at large
scale at Meta. While Zoncolan is only static taint analysis
designed for detection of security vulnerability on Hack code,
PRIvacYCAT is both static and dynamic taint analysis used
to detect privacy leakage on Erlang, Android, and iOS.

The dynamic code analysis approach monitors the pro-
gram during runtime and provides information about how
the subject behaves in real-world scenarios, especially those

K. Mao et al.

may arise due to unforeseen conditions or unexpected user
inputs. PRIVACYCAT’s dynamic taint analysis is built on top
of FAUSTA [26], which is an algorithmic input generation
system based on traffic specifications. FAUSTA was initially
developed for reliability testing of large-scale services at
WhatsApp. Tran et al. [35] introduce a principal-based taint
tracing approach. It enables dynamic analysis of JavaScript
runtime with limited performance overhead. Enck et al. [16]
propose TaintDroid to perform dynamic taint tracking of
sensitive data for Android apps. It supports simultaneous
variable-level tracking of multiple sources and their infor-
mation flows within the Android Dalvik VM interpreter.

The combination of dynamic and static code analysis ap-
proaches have yielded significant advancements in recent
years due to its potential in generating results with less false
negatives and false positives. Marescotti et al. [28] show
early experiments on boosting static analysis implemented
by Infer with dynamic analysis data obtained from FAUSTA
and human-authored tests. The results show complementary
data flows were detected which would otherwise be missed
if perform the two analyses in isolation. Papageorgiou et al.
[32] leverage both static and dynamic approaches to evaluate
mobile health apps’ privacy and security state of practice.
The study revealed major concerns that only few apps fol-
lowed well-established data practices and guidelines. Andow
et al. present PoliCheck [3] to support flow-to-policy anal-
ysis that can differentiate the entity that receives sensitive
data, which is especially useful for detecting unauthorized
data sharing to third-parties. The implementation uses Poli-
cyLint [2] for static analysis of contradictory data sharing
and collection practices, and AppCensus [4] for dynamic
analysis of Android apps.

8 Conclusions

In this paper, we described PRIvacYCAT, a scalable code
analysis system developed at WhatsApp to automatically
detect privacy issues in code. PRIvACYCAT uses both static
and dynamic analysis to improve the accuracy of results and
increase coverage of the code under analysis. PRIvAcYCAT
has been deployed since early 2021 and checks WhatsApp
code bases multiple times a day and at every code change.
The tool has been successful in automatically identifying
the majority of privacy incidents related to sensitive data
collection and sharing, enabling WhatsApp developers to
promptly resolve these issues. Moreover, it has prevented
thousands of privacy issues from being introduced into the
WhatsApp codebases.

9 Acknowledgments

We would like to thank WhatsApp and Meta engineering
leadership for supporting this work. We want to acknowl-
edge our colleagues for their help while designing, develop-
ing, deploying and maintaining PRivacyCAT.

PrivacyCAT: Privacy-Aware Code Analysis at Scale

References
[1] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexan-

[10

[11

[12

[13

[14

[15

[16

—

-

—

—

]

]

]

]
]

[

—

der Mols, Taijin Tei, and Ilya Zorin. 2018. Deploying Search Based
Software Engineering with Sapienz at Facebook. In Search-Based
Software Engineering (Lecture Notes in Computer Science, Vol. 11036),
Thelma Elita Colanzi and Phil McMinn (Eds.). Springer, 3-45. https:
//doi.org/10.1007/978-3-319-99241-9_1

Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin
Whitaker, William Enck, Bradley Reaves, Kapil Singh, and Tao Xie.
2019. PolicyLint: Investigating Internal Privacy Policy Contradictions
on Google Play.. In USENIX Security Symposium. 585-602.

Benjami Andow, Samin Yaseer Mahmud, Justin Whitaker, William
Enck, Bradley Reaves, Kapil Singh, and Serge Egelman. 2020. Actions
speak louder than words: Entity-sensitive privacy policy and data flow
analysis with policheck. In Proceedings of the 29th USENIX Security
Symposium (USENIX Security’20).

AppCensus. 2023. App Search. https://www.appcensus.io/search.
Accessed: 2023-05-29.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. 2014. FlowDroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. Acm Sigplan No-
tices 49, 6 (2014), 259-269.

Andrea Avancini and Mariano Ceccato. 2010. Towards security testing
with taint analysis and genetic algorithms. In Proceedings of the 2010
ICSE Workshop on Software Engineering for Secure Systems. 65-71.

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
Engler. 2010. A few billion lines of code later: using static analysis to
find bugs in the real world. Commun. ACM 53, 2 (2010), 66-75.
Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Pro-
gram Verifier for Memory Safety of C Programs. In NASA Formal Meth-
ods (Lecture Notes in Computer Science, Vol. 6617), Mihaela Gheorghiu
Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.).
Springer, 459-465. https://doi.org/10.1007/978-3-642-20398-5_33
Maria Christakis and Christian Bird. 2016. What developers want
and need from program analysis: An empirical study. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM,
332-343. https://doi.org/10.1145/2970276.2970347

Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and
Rainer Koschke. 2009. A systematic survey of program comprehension
through dynamic analysis. IEEE Transactions on Software Engineering
35, 5 (2009), 684-702.

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program
analysis frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. 269-282.

Dino Distefano, Manuel Fahndrich, Francesco Logozzo, and Peter W.
O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM
62, 8 (2019), 62-70. https://doi.org/10.1145/3338112

Gareth Eason. 2016. Incident Response @ FB, Facebook’s SEV Process.
USENIX Association, Dublin.

Fahimeh Ebrahimi, Miroslav Tushev, and Anas Mahmoud. 2021. Mobile
app privacy in software engineering research: A systematic mapping
study. Information and Software Technology 133 (2021), 106466. https:
//doi.org/10.1016/j.infsof.2020.106466

Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
2011. PiOS: Detecting privacy leaks in iOS applications.. In NDSS.
177-183.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N Sheth. 2014. TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS) 32, 2 (2014), 1-29.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

ICSE-SEIP °24, April 14-20, 2024, Lisbon, Portugal

Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012.
AndroidLeaks: Automatically detecting potential privacy leaks in An-
droid applications on a large scale. In Trust and Trustworthy Computing:
5th International Conference, TRUST 2012, Vienna, Austria, June 13-15,
2012. Proceedings 5. Springer, 291-307.

Radu Grigore, Dino Distefano, Rasmus Lerchedahl Petersen, and Nikos
Tzevelekos. 2013. Runtime Verification Based on Register Automata.
In Tools and Algorithms for the Construction and Analysis of Systems
(Lecture Notes in Computer Science, Vol. 7795), Nir Piterman and Scott A.
Smolka (Eds.). Springer, 260-276. https://doi.org/10.1007/978-3-642-
36742-7_19

Akos Hajdu, Matteo Marescotti, Thibault Suzanne, Ke Mao, Radu
Grigore, Per Gustafsson, and Dino Distefano. 2022. InfERL: scalable
and extensible Erlang static analysis. In Proceedings of the 21st ACM
SIGPLAN International Workshop on Erlang. 33-39.

Rezwana Karim, Frank Tip, Alena Sochurkova, and Koushik Sen. 2020.
Platform-Independent Dynamic Taint Analysis for JavaScript. IEEE
Transactions on Software Engineering 46, 12 (2020), 1364-1379. https:
//doi.org/10.1109/TSE.2018.2878020

Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017.
Static analysis of Android apps: A systematic literature review. Infor-
mation and Software Technology 88 (2017), 67-95.

Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing
and detecting performance bugs for smartphone applications. In Pro-
ceedings of the 36th international conference on software engineering.
1013-1024.

Francesco Logozzo, Manuel Fahndrich, Ibrahim Mosaad, and Pieter
Hooimeijer. 2019. Zoncolan: How Facebook uses static analysis to
detect and prevent security issues. https://engineering.fb.com/2019/
08/15/security/zoncolan/.

Linghui Luo, Rajdeep Mukherjee, Omer Tripp, Martin Schéf, Qiang
Zhou, and Daniel Sanchez. 2023. Long-Term Static Analysis Rule
Quality Monitoring Using True Negatives. In Proceedings of the 45th
International Conference on Software Engineering: Software Engineering
in Practice (Melbourne, Australia) (ICSE-SEIP "23). IEEE Press, 315-326.
https://doi.org/10.1109/ICSE-SEIP58684.2023.00034

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective
automated testing for android applications. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. 94-105.
Ke Mao, Timotej Kapus, Lambros Petrou, Akos Hajdu, Matteo
Marescotti, Andreas Loscher, Mark Harman, and Dino Distefano.
2022. FAUSTA: Scaling Dynamic Analysis with Traffic Generation at
WhatsApp. In Proceedings of 15th IEEE Conference on Software Testing,
Verification and Validation. IEEE, 267-278. https://doi.org/10.1109/
ICST53961.2022.00036

Diego Marcilio, Rodrigo Bonifacio, Eduardo Monteiro, Edna Canedo,
Welder Luz, and Gustavo Pinto. 2019. Are static analysis violations
really fixed? a closer look at realistic usage of SonarQube. In 2019
IEEE/ACM 27th International Conference on Program Comprehension
(ICPC). IEEE, 209-219.

Matteo Marescotti, Akos Hajdu, Dino Distefano, and Ke Mao. 2023.
Boosting Static Analysis with Dynamic Runtime Data at WhatsApp
Server. In Proc. of ICSE’2023 (Industry Forum).

Wes Masri, Andy Podgurski, and David Leon. 2004. Detecting and
debugging insecure information flows. In 15th International Symposium
on Software Reliability Engineering. IEEE, 198-209.

Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. 2015.
Taintpipe: Pipelined symbolic taint analysis. In 24th USENIX Security
Symposium (USENIX Security 15). 65-80.

James Newsome and Dawn Xiaodong Song. 2005. Dynamic taint
analysis for automatic detection, analysis, and signaturegeneration of
exploits on commodity software.. In NDSS, Vol. 5. Citeseer, 3-4.

https://doi.org/10.1007/978-3-319-99241-9_1
https://doi.org/10.1007/978-3-319-99241-9_1
https://www.appcensus.io/search
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/3338112
https://doi.org/10.1016/j.infsof.2020.106466
https://doi.org/10.1016/j.infsof.2020.106466
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1109/TSE.2018.2878020
https://doi.org/10.1109/TSE.2018.2878020
https://engineering.fb.com/2019/08/15/security/zoncolan/
https://engineering.fb.com/2019/08/15/security/zoncolan/
https://doi.org/10.1109/ICSE-SEIP58684.2023.00034
https://doi.org/10.1109/ICST53961.2022.00036
https://doi.org/10.1109/ICST53961.2022.00036

ICSE-SEIP ’24, April 14-20, 2024, Lisbon, Portugal

(32]

(33]

(34]

Achilleas Papageorgiou, Michael Strigkos, Efthimios Politou, Eugenia
nd Alepis, Agusti Solanas, and Constantinos Patsakis. 2018. Security
and privacy analysis of mobile health applications: the alarming state
of practice. Jeee Access 6 (2018), 9390-9403.

Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester,
Ram Krishnan, Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. 2016.
Toward a framework for detecting privacy policy violations in android
application code. In Proceedings of the 38th International Conference on
Software Engineering. 25-36.

Zeya Tan and Wei Song. 2023. PTPDroid: Detecting Violated User Pri-
vacy Disclosures to Third-Parties of Android Apps. In 2023 IEEE/ACM

[35]

[36]

K. Mao et al.

45th International Conference on Software Engineering (ICSE). 473-485.
https://doi.org/10.1109/ICSE48619.2023.00050

Minh Tran, Xinshu Dong, Zhenkai Liang, and Xuxian Jiang. 2012.
Tracking the trackers: Fast and scalable dynamic analysis of web con-
tent for privacy violations. In International Conference on Applied Cryp-
tography and Network Security. Springer, 418—435.

Zhemin Yang and Min Yang. 2012. Leakminer: Detect information
leakage on Android with static taint analysis. In 2012 Third World
Congress on Software Engineering. IEEE, 101-104.

https://doi.org/10.1109/ICSE48619.2023.00050

	Abstract
	1 Introduction
	2 Background
	3 Dynamic Analysis
	4 Static Analysis
	5 System Deployment
	6 Evaluation
	6.1 Data Collection and Methodology
	6.2 Effectiveness
	6.3 Vulnerability Types
	6.4 False Positive, False Negatives, and Fix Rate
	6.5 Challenges

	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References

