
Automated End-to-End Dynamic Taint Analysis for WhatsApp

Sopot Cela∗

Meta
London, United Kingdom

scela@meta.com

Andrea Ciancone
Meta

London, United Kingdom
aciancone@meta.com

Per Gustafsson†

Meta
London, United Kingdom

pergu@meta.com

Ákos Hajdu
Meta

London, United Kingdom
akoshajdu@meta.com

Yue Jia
Meta

London, United Kingdom
yuej@meta.com

Timotej Kapus
Meta

London, United Kingdom
kapust@meta.com

Maksym Koshtenko
Meta

London, United Kingdom
mkosh@meta.com

Will Lewis
Meta

London, United Kingdom
willjwlewis@meta.com

Ke Mao
Meta

London, United Kingdom
kemao@meta.com

Dragos Martac
Meta

London, United Kingdom
dragosmartac@meta.com

ABSTRACT

Taint analysis aims to track data �ows in systems, with potential use
cases for security, privacy and performance. This paper describes
an end-to-end dynamic taint analysis solution for WhatsApp. We
use exploratory UI testing to generate realistic interactions and
inputs, serving as data sources on the clients and then we track data
propagation towards sinks on both client and server sides. Finally, a
reporting pipeline localizes tainted �ows in the source code, applies
deduplication, �lters false positives based on production call sites,
and �les tasks to code owners. Applied to WhatsApp, our approach
found 89 �ows that were �xed by engineers, and caught 50% of all
privacy-related �ows that required escalation, including instances
that would have been di�cult to uncover by conventional testing.

CCS CONCEPTS

• Software and its engineering→ Dynamic analysis.

KEYWORDS

Taint analysis, simulation, testing

ACM Reference Format:

Sopot Cela, Andrea Ciancone, Per Gustafsson, Ákos Hajdu, Yue Jia, Tim-
otej Kapus, Maksym Koshtenko, Will Lewis, Ke Mao, and Dragos Mar-
tac. 2024. Automated End-to-End Dynamic Taint Analysis for WhatsApp.
In Companion Proceedings of the 32nd ACM International Conference on

the Foundations of Software Engineering (FSE Companion ’24), July 15–19,

2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3663529.3663824

∗Authors are in alphabetical order, which is not intended to denote any information
about the relative contribution.
†All of Per Gustafsson’s contribution to this work was conducted at Meta.

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663824

1 INTRODUCTION

The purpose of taint analysis is to track the propagation of data in
systems or programs in order to show the presence (or prove the
absence) of certain �ows. Taint analysis has various applications in
security [4, 7, 8, 15, 18], privacy [14, 17, 19, 22] and performance [5]
analysis. At Meta, we develop various code analysis tools to help
our programmers write robust code. The goal of this particular
work is to provide WhatsApp developers with an automated and
end-to-end taint analysis tool. Automation means that developers
only have to specify the source and the sink of the �ow, and being
end-to-end refers to the fact that propagation can be tracked both
on the clients (Android and iOS) and the server.

Making an automated and end-to-end taint analysis tool practical
in WhatsApp’s environment comes with a few challenges. First, we
cannot record and replay real user data to remain private. Further-
more, we cannot use release builds as we need symbolication for
precise localization and further instrumentation (e.g., redirecting
client tra�c to sandbox server). As a consequence of using non-
release builds and arti�cial data, we might report �ows that do not
exist in production (false positives). Therefore, we need heuristics
to mitigate this in a post-processing step. Finally, it is technically
challenging to support the wide range of platforms (server and
clients) and programming languages (Java, Kotlin, Objective-C,
Swift, Erlang, Hack) in WhatsApp’s ecosystem.

To tackle the aforementioned challenges, we propose a dynamic
analysis built on top of Sapienz [12]. Sapienz uses exploratory user
interface (UI) testing to generate realistic (but arti�cial, and thus
privacy-safe) interactions and data for a pool of test users. We
can con�gure which data acts as a source on the clients. Sapienz
then aims to generate interactions that maximize the coverage of
the analysis. We use custom instrumented builds that can track
what data reached our pre-de�ned sinks (e.g., application logs)
including symbols (e.g., module/function names) both on client
and server sides. Furthermore, custom sinks can also be added via
(platform-speci�c) instrumentation. Our analyzer then uses both
pre-de�ned and con�gurable rules (e.g., regular expressions) to
match the data in the sinks with the sources to �nd tainted �ows.
Finally, a reporting pipeline to localizes the �ows in the source

This work is licensed under a Creative Commons Attribution-

NoDerivatives 4.0 International License.

21

https://creativecommons.org/licenses/by-nd/4.0/
https://orcid.org/0009-0002-1396-1049
https://orcid.org/0009-0007-2990-6366
https://orcid.org/0009-0006-0682-5056
https://orcid.org/0000-0001-8001-8865
https://orcid.org/0009-0004-2871-2285
https://orcid.org/0009-0002-8261-9650
https://orcid.org/0009-0006-4316-316X
https://orcid.org/0009-0001-7615-5709
https://orcid.org/0000-0003-3956-9184
https://orcid.org/0009-0003-1797-4645
https://doi.org/10.1145/3663529.3663824
https://doi.org/10.1145/3663529.3663824
https://doi.org/10.1145/3663529.3663824

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil S. Cela, A. Ciancone, P. Gustafsson, Á. Hajdu, Y. Jia, T. Kapus, M. Koshtenko, W. Lewis, K. Mao, D. Martac

code, applies deduplication, �lters false positives and attributes
tasks to the appropriate code owner. Localization and ownership
attribution is based on querying the source control system and it
helps to make the tasks actionable. False positives are �ltered by
heuristics matching the �ows (found in non-release builds) against
production call sites.

We developed and rolled out our analyzers iteratively, collecting
feedback and improving precision and coverage over time. Our
initial focus was on privacy use cases and we �led 174 and 33 tasks
with a true positive rate of 39% and 64% for Android and iOS, re-
spectively. Moreover, our automated analyzers have detected 40%
(Android) and 60% (iOS) of all privacy-related data �ows that re-
quired further investigation/escalation during the observed period.
Some of the detected �ows occur under very special circumstances
that would have been hard to uncover by conventional testing. This
leads us to the conclusion that our analyzers are e�ective in helping
developers write and maintain robust and high quality code. To
summarize, the contributions of the paper are twofold: we propose
a novel way to leverage Sapienz for dynamic taint analysis and we
report on a large-scale industrial case study at WhatsApp.

2 BACKGROUND

Taint analysis. Given a set of sources, a set of sinks and a set of
sanitizers, the goal of taint analysis is to determine whether there
is a data �ow from a source to a sink without passing through a
sanitizer. Such �ows are called tainted �ows and the associated
data is said to be tainted. As an example, consider the following
pseudocode.

d = getData()

try: process(d)

catch err: log("Error " + err + " for data " + d)

In this example, we can de�ne getData as a source and log as a
sink. It is easy to see that if an error happens during the execution
of process, then there is a tainted �ow from getData to log via
the variable d. However, if we introduce a sanitizer function hash,
and pass hash(d) into log, there would be no tainted �ows.

Sapienz. Sapienz [12] is an automated tool for fault-discovery
in mobile or web applications based on user-interface (UI) interac-
tions. Automation here means that application developers are not
required to de�ne and hard-code a speci�c user journey for their
tests, but can instead rely on the built-in capabilities of Sapienz
to explore the application under test (AUT) and discover potential
issues. Sapienz tries to simulate user behavior and maximize UI
coverage by spawning a pre-de�ned number of parallel runs for
the speci�ed application version. In each run, the UI hierarchy of
the AUT is read at every step, a list of eligible actions (e.g., tap
on views, insert text, swipe, etc.) is built based on a set of human-
crafted heuristics and then ranked based on a recursive reward
algorithm that tries to optimize for novelty discovery. More speci�-
cally, the algorithm aims to rank those actions higher that are more
likely to unlock unexplored features of the AUT (e.g., an action that
takes to a page that has not yet been explored).

Another mechanism that Sapienz uses to maximize coverage
is injecting rich test user states before any action is performed
(e.g., spawn multiple test users, form connections, etc.) [2]. Due
to the social nature of the applications developed at WhatsApp

(and Meta), augmenting the application with content before the
run proved to unlock a wider variety of testing scenarios. On top
of this, Sapienz allows customizing its behavior at various stages of
the testing through a plug-in mechanism called “external listeners”.
This enables custom logic (code) to be executed before starting the
run, in-between the UI actions and before run completion.

As described above, Sapienz has been built with the purpose
of maximizing fault-discovery, which requires completeness- and
novelty-seeking UI interaction generation. This behavior makes
Sapienz suitable for our current work as well, with the goal of pro-
ducing and analyzing a diverse set of data �ows related to privacy.

WhatsApp. WhatsApp consists of di�erent clients communicating
with the server. Our current work targets the server (written in Er-
lang/Hack), the Android client (written in Java/Kotlin) and the iOS
client1 (written in Objective-C/Swift). Each of these components
consist of millions of lines of code. As described later in the paper,
doing such multi-platform analysis is challenging and we had to
come up with an architecture that supports platform speci�c ex-
tensions (e.g. instrumentation or post processing depending on the
platform/language).

In this particular work at WhatsApp, we focus on privacy and
de�ne certain UI elements and device APIs (related to user data)
on the clients as sources; logging APIs and sensitive endpoints on
both client and server side as sinks; and redacting/obfuscating data
transformations as sanitizers.

3 DYNAMIC TAINT ANALYSIS WITH SAPIENZ

An overview of the architecture can be seen in Figure 1. The main
inputs of the work�ow are a platform (Android/iOS) and a build
handle with the corresponding commit hash (defaulting to the lat-
est version). For Android, we use a customized debug build, which
includes symbols in logs and has instrumentation for some addi-
tional (WhatsApp speci�c) sinks besides the standard application
logs. We can also redirect tra�c to a sandbox server for end-to-end
taint analysis. The iOS integration is more recent, and it uses beta
builds (having symbols) with no extra instrumentation or sandbox
redirection (yet). The sources, sinks and sanitizers are de�ned in
code or con�guration. In the following, we describe the three main
phases in detail: (1) data generation and simulation with Sapienz,
(2) log parsing and tainted data matching, and (3) reporting.

3.1 Data Generation and Simulation

The initial step for a Sapienz run is to acquire a device in the form
of an emulator (Android) or simulator (iOS). Once the connection
to the corresponding device is established, the AUT is installed
and a test phone number is registered as a WhatsApp user on the
device. The test phone number is leased from a pool dedicated to
our use case, subject to a number of isolation mechanisms such
that interactions with numbers outside the pool are blocked. As
Sapienz relies on multiple parallel runs to achieve higher coverage,
it generates a list of contact test numbers for each test user that
are likely to be active in other runs. We use this list of contacts to
generate content for the current client, such as creating groups or
communities. The bene�t of this step is twofold. On one hand, by

1While Sapienz provides capabilities for testing web applications as well, the focus of
the current work is narrowed to the two main mobile clients.

22

Automated End-to-End Dynamic Taint Analysis for WhatsApp FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Action ranking

Action generator

Data generator

External listener

Simulator / emulator

Platform, build ID, commit

Log parser

Taint
matcher

Code pointer
Logged data

Generated data (sources)

Localization
Tainted flows

(code ptr + evidences)

Deduplication

Prod match

Ownership

Tasks

Source
control

Evidence
DB

Prod logs

Code ptr

Context

Key

Results

Query

Volume

Attribution

Sapienz

Logs

ActionsDriver

Sandbox server

(Instrumented) app

Rules (sinks)

Figure 1: Overview of the architecture. Components with a grey background are platform dependent.

simply adding the extra content in the initial state of the application,
we extend the list of eligible actions, thereby giving Sapienz more
possible paths to choose from. On the other hand, by choosing
contacts that are likely to be active, we leverage the network e�ect
to increase the chance of multi-client interactions such as VoIP calls
or opening disappearing messages.

We use the external listener mechanism of Sapienz to specify
and gather the subset of generated data to be used as sources in the
rest of the pipeline. Examples include phone numbers, contacts, UI
textbox contents, IP addresses, locations, etc. Finding the relevant
data was challenging and required domain- and platform-speci�c
knowledge from WhatsApp developers. Note also that Sapienz
treats the AUT mostly as a black-box, therefore, we have to make
sure that the generated data is unique enough to be identi�ed at the
sinks without tracing its complete path throughout the application.

Our simulation termination criteria include multiple conditions,
most commonly a limit on the number of UI actions. Sapienz outputs
the generated data at sources and the logged sinks. The output
also includes each UI action performed (e.g., tap, type, scroll), UI
hierarchies at each step, and a screen recording.

Some of the sinks require very speci�c actions in order to be po-
tentially triggered (e.g., account linking). We use external listeners
to directly inject such actions to make Sapienz’s search easier. This
can be seen as slightly breaking our promise of a fully automated
analysis. However, in practice we only needed to de�ne such ac-
tions in a few speci�c cases and the majority of the analysis still
remains fully automated.

3.2 Log Parsing and Tainted Data Matching

We get standard application logs from the clients and the server,
as well as custom (WhatsApp speci�c) logs provided by our builds
with instrumented sinks. First, we parse the logs with a platform
dependent parser. Each log �le is split up into individual logging
statements (which might be multi-line depending on the platform),
and we extract pairs of logged data and code pointers. Depending
on the platform, the code pointer can include �lename, module,
function and line number, as well as stack traces.

The external listeners in Sapienz provide the generated data
(sources) that we match against the logged data (sinks). Matching is
based on rules, which can be de�ned by implementing a particular
interface, but there are some general rules that can be reused and

con�gured. For example, the most basic rule is to simply �nd the
occurrence of a generated data in the log using regular expressions.
However, we also have rules that �lter based on logging level, or re-
quire a combination of sources to reach the sink (e.g., pairs of phone
numbers). Each occurrence of a rule matching a logging statement
is called an evidence. We group evidences together by code pointers
(to avoid duplicated reports) resulting in the preliminary set of
tainted �ows.

3.3 Reporting

Localization. The �rst step of the reporting pipeline is localiza-
tion. Depending on the platform and language, code pointers might
only include partial or limited information. Localization uses the
source control manager (SCM) to �ll in the missing bits so that code
pointers precisely identify the full �le path and line number (plus
we know the commit hash from the input). For example, in Swift
we only have the �le name, but not the path, so we use an SCM
query to �nd the path (the �le name is almost always unique). We
also get the line’s content and the surrounding context to be used
in subsequent steps.

Deduplication. The purpose of deduplication is to avoid reporting
the same �ow multiple times. Potential duplication can occur for
various reasons. First, a previous run might have already found the
�ow and there is a task open, but the developers are still working
on it. Moreover, lines might shift around in the code due to other
(unrelated) modi�cations in the �le. To avoid this so-called false

splitting we use the �le name and the line’s content as a key to save
and query already reported �ows in our evidence database. If line
content is not available, we fall back on using line number. This
step can also reopen a task, which was closed but not addressed
properly and the �ow still exist (new evidence is found).

Production Matching. As described earlier, we use non-producti-
on builds for technical reasons. This can, however, cause false pos-
itives because we can miss certain sanitization that is happening
only in production builds. Furthermore, non-release builds often
include initialization code with additional logging for testing pur-
poses. To mitigate this, we use various heuristics (depending on
the platform/language) to match the found �ows against call sites
found in production logs.

23

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil S. Cela, A. Ciancone, P. Gustafsson, Á. Hajdu, Y. Jia, T. Kapus, M. Koshtenko, W. Lewis, K. Mao, D. Martac

Production logs do not always have symbols (especially for
clients) and line numbers might shift around. Therefore we use
the logging context (obtained from localization) to search. For ex-
ample, if we have a logging statement

log("Error " + err + " for data " + d)

then we search for the strings "Error " and " for data ". Inter-
estingly, this can actually result in more false postivies for certain
words that commonly appeared elsewhere in the logs so we main-
tain a blocklist of common words.

Sanitizers are also implemented here as a post processing step:
we add further �lters to the query to eliminate �ows that do not
happen in production call sites. For example, checking for digits
replaced by ****** in phone numbers is one of the sanitizers we
use. We also add �lters for the date range and build version number
(to avoid reporting �ows that happened in the past but not recently),
and the build type (e.g., avoid local debug or alpha builds).

Besides �ltering false positives, we also rely on productionmatch-
ing for signal boosting: depending on the volume of �ows present
in production, we can assign di�erent priorities to the �ows.

Ownership Attribution. The �nal step of reporting is to �le a task
to the appropriate owner. For this we use the same Meta subsystem
that is used to determine potential reviewers for a code change. The
owner usually depends on information obtained from the source
code, such as blame information or oncall annotations.

Tasks. The resulting tasks include various information for the
developers to be actionable and easy to debug, including source and
sink description, code pointer and stack trace (depending on plat-
form), Sapienz recorded video of the simulation, (arti�cial) samples
from the analyzer run, production volume and the query. Develop-
ers can follow-up on tasks by attaching a code change (acknowledg-
ing that the �ow is a true positive) or closing the task and attaching
some tag (e.g., false-positive). Such follow-up actions are recorded
in our evidence database and can be used in future runs (e.g., do
not report a false positive again).

4 RESULTS

Deployment. We deployed our analyzers in an iterative process.
Initially, we started with dry runs that would just log the �ows with-
out �ling tasks. Then we moved on to shadow runs, where tasks
were �led but they were attributed to our team for further investi-
gation. We checked these tasks, triaged the (likely) true positives
to developers, and re�ned our analysis based on false positives and
feedback from developers. Discussion with developers also helped
us to improve analysis coverage (e.g., by adding new sinks and
sources) and reduce false negatives. Our analyses now run thou-
sands of times a day in the continuous integration (CI) pipeline
for the latest WhatsApp Android and iOS builds, �ling and triag-
ing tasks to code owners directly. In the meantime we still collect
feedback from developers and re�ne our analyses as needed.

Overview. Table 1 presents an overview of our results so far. The
table breaks down tasks �xed (closed with a code change attached,
which we consider as a con�rmation for being true positive) and
suppressed (closed with no �x attached, tagged as false positives).
Note that the two percentages do not add up to 100% because there
can be tasks pending and open. The high di�erence between the

number of tasks �led for the two platforms can be attributed to
the fact that the iOS analysis is a more recent development and
has been running for a signi�cantly shorter time than the Android
analysis (few months vs. more than a year).

Table 1: Tainted �ows (including high-priority SEVs) detected

and closed with or without a �x.

Tasks SEVs
Platform Filed Fixed Suppressed All Detected Missed
Android 174 68 (39%) 102 (59%) 10 4 (40%) 6 (60%)
iOS 33 21 (64%) 9 (27%) 10 6 (60%) 4 (40%)
Total 207 89 (43%) 111 (54%) 20 10 (50%) 10 (50%)

False Positives. False positives can occur due to various reasons,
mostly attributed to the fact that we cannot use production builds
and data, and instead rely on post-processing heuristics as a mitiga-
tion. First of all, Sapienz performs certain steps to set up the initial
state. We needed to explicitly exclude �ows originating from here
as they cannot happen in production. An other prominent example
is the inconsistent usage of APIs: instead of using the appropri-
ate API function to log at a given level, developers sometimes use
alternative workarounds, slipping through our production match-
ing heuristics (e.g., using if isDebug(): Log.production(...)

instead of Log.debug(...)). Furthermore, in some cases the san-
itizers are vaguely de�ned (e.g., no explicit limit for production
volume), which also causes some inevitable false positives. Our
experience so far suggests that the current false positive rate is
acceptable for production, but as mentioned earlier, we are continu-
ously monitoring developer feedback. We report less false positives
(and as a consequence also less total tasks) on iOS due to using beta
builds (as opposed to debug builds on Android). Note also that false
positives can usually be identi�ed and suppressed within a few min-
utes, thanks to the comprehensive output from Sapienz, including
precise code pointers and video recordings of the simulation.

Escalation. Some of the tasks have actually been escalated to
so-called SEV s, which is an internal mechanism and rigorous pro-
cess for �xing and tracking high-priority tasks. These numbers
are reported in the SEVs Detected column (and are included in the
�gures of the Tasks Fixed column as well). We also monitored all
the other SEVs related to privacy, which were not detected by our
analyzers, but �led through other means, such as manual reporting
(SEVs Missed column). This gives us a sense of the percentage of
privacy-related data �ows that slipped through our analyzers (false
negatives). There were examples of false negatives simply attrib-
uted to the fact that our analyzers were developed incrementally:
sometimes we learned about the existence of an interesting, but not
yet covered source or sink via a manually �led SEV. In these cases
we added the relevant con�gurations to make sure these �ows are
detected by our tools should they happen again. However, some
of the false negatives are very speci�c from a technical point of
view and require a case by case remediation. For instance, one slip
through was related to a locale-aware rule that needed custom
(country-speci�c) test users to be triggered. Another class of false
negatives comes from new features that are originally gated in

24

Automated End-to-End Dynamic Taint Analysis for WhatsApp FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

debug builds (e.g., through test user con�gurations or UI toggles),
but are enabled by default in production. This indicates that the
full potential of the tool can be exploited with e�ective developer
collaboration. To facilitate this, we created a dashboard for mon-
itoring coverage (see paragraph below) and we are maintaining
communication channels for feedback and requests. Note also that
our approach – as usual for testing – is not intended prove the
absence of tainted �ows; instead, it can only con�rm their presence.

An other interesting aspect of the results is that the number of
SEVs for both platforms is similar while the number of tasks di�ers
signi�cantly. While we do not have a de�nite explanation for this,
our hypothesis is the “true negative e�ect” as described by a study
from Amazon [10]: recommendations coming from automated tools
are internalized by developers over time, who will avoid making the
same mistakes again. Furthermore, when an analyzer is deployed
the �rst time, it is likely to �nd tainted �ows that have been present
for a longer time and have a higher chance of being escalated.
However, once an analyzer runs frequently (e.g., daily), tainted
�ows are often detected before needing an escalation, which is in
fact one of the main points of having such automated tooling.

Performance. Table 2 highlights the p50 and p90 execution times2

of the full analysis (Sapienz + taint matching + reporting) and
exploration (Sapienz) only. The key takeaway from the numbers is
that the analysis is fast enough to be triggered multiple times per
day. Sapienz runs are slightly slower on iOS because exploration
often leavesWhatsApp (e.g., clicking on a link that opens a browser)
and actions that take Sapienz back toWhatsApp are more expensive.

Table 2: Execution time, UI actions volume and coverage.

Execution time (mins)
Sapienz Total Jobs Actions

Platform p50 p90 p50 p90 /day /job /day Coverage
Android 10.2 13.8 14.7 18.2 1920 100 1.92M 34%
iOS 14.5 16.7 18.2 21.1 1920 100 1.92M 46%

Table 2 also presents the number of jobs and actions executed
(excluding setup actions). Sapienz deployments at Meta typically
work with 50–100 actions per job, which has proven to give a good
trade-o� between performance and depth of exploration. Having
thousands of jobs with millions of actions per day increases our
chance to catch rare �ows, e.g., �ows with rare exceptions or �ows
depending on race conditions.

Coverage. We measured Activity3 and UIViewController4

coverage for Android and iOS respectively, which roughly cor-
respond to a single page or screen in the apps. These numbers are
relatively high for an industrial use case [20]. Monitoring coverage
also helps us to detect regressions and identify parts of the apps that
need more coverage (e.g., injecting actions with external listeners).

Server Side. The numbers presented in Table 1 correspond to
sinks on the clients. End-to-end analysis on the server side is more
preliminary, most notably it does not have production matching

2p50/p90 means that 50%/90% of jobs �nished within the indicated time.
3https://developer.android.com/reference/android/app/Activity
4https://developer.apple.com/documentation/uikit/uiviewcontroller

yet. Therefore, it has not yet been rolled out to automatically triage
tasks to developers. However, we did conduct a few experiments
which resulted in 3 true positive tasks (manually triaged), including
2 SEVs. Furthermore, the server has already seen good coverage
using tra�c generation and tests directly (without clients) [13].

Example. One particularly interesting example was when data
from a source ended up being used as the �le name of a �le locally
cached on the iOS client. In certain race conditions, this �le was
about to be deleted by two concurrent processes. The �rst one suc-
ceeded, but the second crashed (because the �le was already gone)
and an error message containing the �le name (and consequently
the tainted data) ended up being logged. This tainted �ow happened
non-deterministically, meaning that it would have been hard to
uncover or debug by conventional testing. However, our analysis
runs automatically and continuously in large scale, having a much
higher chance to �nd such �ows.

5 RELATED WORK

FAUSTA [13] is an automated testing tool for WhatsApp server
that generates tra�c based on client-server tra�c speci�cations.
FAUSTA can be used to detect crashes, performance regressions,
and it also supports taint analysis. InfERL [6] is a static analysis tool
for Erlang, which supports taint properties described by automata.
Both FAUSTA and InfERL are deployed to scan WhatsApp server,
complementing the Sapienz-based analysis described in this paper
and all of them are modules in the PrivacyCAT system [11].

Zoncolan [9] is a static taint analysis tool deployed for Hack
code at Meta, primarily targeting security properties and running
on code modi�cations as part of the review process.

PTPDroid [17] and GUILeak [21] are two automated tools that
leverage a static taint analyzer tool named FlowDroid [3] aiming to
identify privacy policy violations in popular Android applications.
The former focuses on identifying violations coming from API calls
to 3rd parties, while the latter is aiming to discover leaks coming
from user inputs (extending the classical approach to look at device
information such as location or device ID). Similarly, in the current
work, we construct the sources as a combination of device APIs
and generated inputs.

ViaLin [1] is a recent dynamic analysis tool that focuses on
precise tracking of tainted �ows (i.e., not only the endpoints) on
Android applications via instrumentation.

Privee [23] and Hermes [16] convert requirements into struc-
tured formats based on natural language analysis. Such tools could
reduce our manual e�ort when de�ning sinks and sources from
plain English requirements.

6 CONCLUSIONS

In this paper we presented an automated and end-to-end dynamic
taint analysis system for WhatsApp. Our solution relies on Sapienz
to generate realistic test user interactions and data on the client
side. We track data propagation into pre-de�ned and customizable
sinks on both client and server sides. A reporting pipeline with
various heuristics then localizes the �ows, applies deduplication,
�lters false positives and �les tasks to programmers. Our analyzers
have been deployed at WhatsApp with promising results on �x
rates and detecting privacy-related �ows that needed escalation.

25

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil S. Cela, A. Ciancone, P. Gustafsson, Á. Hajdu, Y. Jia, T. Kapus, M. Koshtenko, W. Lewis, K. Mao, D. Martac

REFERENCES
[1] Khaled Ahmed, Yingying Wang, Mieszko Lis, and Julia Rubin. 2023. ViaLin: Path-

Aware Dynamic Taint Analysis for Android. In Proc. of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (FSE). ACM, 1598–1610. https://doi.org/10.1145/3611643.3616330

[2] Nadia Alshahwan, Arianna Blasi, Kinga Bojarczuk, Andrea Ciancone, Natalija
Gucevska, Mark Harman, Simon Schellaert, Inna Harper, Yue Jia, Michal Kro-
likowski, Will Lewis, Dragos Martac, Rubmary Rojas, and Kate Ustiuzhanina.
2024. Enhancing Testing at Meta with Rich-State Simulated Populations. In Pro-
ceedings of the IEEE/ACM 46th International Conference on Software Engineering:
Software Engineering in Practice. (Accepted, in press).

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise context, �ow, �eld, object-sensitive and lifecycle-aware
taint analysis for Android apps. ACM SIGPLAN Notices 49, 6 (2014), 259–269.
https://doi.org/10.1145/2666356.2594299

[4] Subarno Banerjee, Siwei Cui, Michael Emmi, Antonio Filieri, Liana Hadarean,
Peixuan Li, Linghui Luo, Goran Piskachev, Nicolás Rosner, Aritra Sengupta,
Omer Tripp, and Jingbo Wang. 2023. Compositional Taint Analysis for Enforcing
Security Policies at Scale. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, 1985–1996. https://doi.org/10.1145/3611643.3613889

[5] Marcin Copik, Alexandru Calotoiu, Tobias Grosser, Nicolas Wicki, Felix Wolf,
and Torsten Hoe�er. 2021. Extracting Clean Performance Models from Tainted
Programs. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM, 403–417. https://doi.org/10.1145/3437801.
3441613

[6] Ákos Hajdu, Matteo Marescotti, Thibault Suzanne, Ke Mao, Radu Grigore, Per
Gustafsson, and Dino Distefano. 2022. InfERL: Scalable and Extensible Erlang
Static Analysis. In Proceedings of the 21st ACM SIGPLAN International Workshop
on Erlang. ACM, 33–39. https://doi.org/10.1145/3546186.3549929

[7] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2006. Using
Positive Tainting and Syntax-Aware Evaluation to Counter SQL Injection Attacks.
In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 175–185. https://doi.org/10.1145/1181775.1181797

[8] Jingfei Kong, Cli� C. Zou, and Huiyang Zhou. 2006. Improving Software Security
via Runtime Instruction-Level Taint Checking. In Proceedings of the 1st Workshop
on Architectural and System Support for Improving Software Dependability. ACM,
18–24. https://doi.org/10.1145/1181309.1181313

[9] Francesco Logozzo, Manuel Fahndrich, Ibrahim Mosaad, and Pieter Hooimeijer.
2019. Zoncolan: How Facebook uses static analysis to detect and prevent security
issues. https://engineering.fb.com/2019/08/15/security/zoncolan/.

[10] Linghui Luo, Rajdeep Mukherjee, Omer Tripp, Martin Schäf, Qiang Zhou, and
Daniel Sanchez. 2023. Long-term static analysis rule quality monitoring using
true negatives. In Proceedings of the 2023 IEEE/ACM 45th International Conference
on Software Engineering: Software Engineering in Practice. IEEE, 315–326. https:
//doi.org/10.1109/ICSE-SEIP58684.2023.00034

[11] Ke Mao, Cons T Åhs, Sopot Cela, Dino Distefano, Nick Gardner, Radu Grig-
ore, Per Gustafsson, Ákos Hajdu, Timotej Kapus, Matteo Marescotti, Gabriela
Cunha Sampaio, and Thibault Suzanne. 2024. PrivacyCAT: Privacy-Aware Code
Analysis at Scale. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering: Software Engineering in Practice. (Accepted, in press).

[12] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for Android applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis. ACM, 94–105. https://doi.org/10.1145/
2931037.2931054

[13] Ke Mao, Timotej Kapus, Lambros Petrou, Ákos Hajdu, Matteo Marescotti, An-
dreas Löscher, Mark Harman, and Dino Distefano. 2022. FAUSTA: Scaling Dy-
namic Analysis with Tra�c Generation at WhatsApp. In Proceedings of 15th
IEEE Conference on Software Testing, Veri�cation and Validation. IEEE, 267–278.
https://doi.org/10.1109/ICST53961.2022.00036

[14] Sydur Rahaman, Iulian Neamtiu, and Xin Yin. 2021. Algebraic-Datatype Taint
Tracking, with Applications to Understanding Android Identi�er Leaks. In Pro-
ceedings of the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. ACM, 70–82.
https://doi.org/10.1145/3468264.3468550

[15] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In 2010 IEEE Symposium on
Security and Privacy. 317–331. https://doi.org/10.1109/SP.2010.26

[16] John W. Stamey and Ryan A. Rossi. 2009. Automatically Identifying Relations in
Privacy Policies. In Proceedings of the 27th ACM International Conference on Design
of Communication. ACM, 233–238. https://doi.org/10.1145/1621995.1622041

[17] Zeya Tan and Wei Song. 2023. PTPDroid: Detecting Violated User Privacy
Disclosures to Third-Parties of Android Apps. In Proceedings of the 2023 IEEE/ACM
45th International Conference on Software Engineering. 473–485. https://doi.org/
10.1109/ICSE48619.2023.00050

[18] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: E�ective Taint Analysis of Web Applications. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 87–97. https://doi.org/10.1145/1542476.1542486

[19] Jie Wang, Yunguang Wu, Gang Zhou, Yiming Yu, Zhenyu Guo, and Yingfei
Xiong. 2020. Scaling Static Taint Analysis to Industrial SOA Applications: A
Case Study at Alibaba. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 1477–1486. https://doi.org/10.1145/3368089.3417059

[20] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An Empirical Study of Android Test Generation Tools
in Industrial Cases. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 738–748. https://doi.org/10.1145/
3238147.3240465

[21] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D. Breaux,
and Jianwei Niu. 2018. GUILeak: Tracing Privacy Policy Claims on User Input
Data for Android Applications. In Proceedings of the 40th International Conference
on Software Engineering. ACM, 37–47. https://doi.org/10.1145/3180155.3180196

[22] Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang
Huang, and Xuanzhe Liu. 2021. TaintStream: Fine-Grained Taint Tracking for
Big Data Platforms through Dynamic Code Translation. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 806–817. https://doi.org/10.
1145/3468264.3468532

[23] Sebastian Zimmeck and Steven M. Bellovin. 2014. Privee: An Architecture for
Automatically Analyzing Web Privacy Policies. In Proceedings of the 23rd USENIX
Conference on Security Symposium. USENIX Association, 1–16.

Received 2024-02-08; accepted 2024-04-18

26

https://doi.org/10.1145/3611643.3616330
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/3611643.3613889
https://doi.org/10.1145/3437801.3441613
https://doi.org/10.1145/3437801.3441613
https://doi.org/10.1145/3546186.3549929
https://doi.org/10.1145/1181775.1181797
https://doi.org/10.1145/1181309.1181313
https://engineering.fb.com/2019/08/15/security/zoncolan/
https://doi.org/10.1109/ICSE-SEIP58684.2023.00034
https://doi.org/10.1109/ICSE-SEIP58684.2023.00034
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1109/ICST53961.2022.00036
https://doi.org/10.1145/3468264.3468550
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/1621995.1622041
https://doi.org/10.1109/ICSE48619.2023.00050
https://doi.org/10.1109/ICSE48619.2023.00050
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/3368089.3417059
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3180155.3180196
https://doi.org/10.1145/3468264.3468532
https://doi.org/10.1145/3468264.3468532

	Abstract
	1 Introduction
	2 Background
	3 Dynamic Taint Analysis with Sapienz
	3.1 Data Generation and Simulation
	3.2 Log Parsing and Tainted Data Matching
	3.3 Reporting

	4 Results
	5 Related Work
	6 Conclusions
	References

