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Abstract
In this paper we introduce InfERL, an open source, scalable,

and extensible static analyzer for Erlang, based on Meta’s

Infer tool. InfERL has been developed at WhatsApp and it is

deployed to regularly scan WhatsApp server’s Erlang code-

base, detecting reliability issues and checking user-defined

properties. The paper describes the Erlang specific technical

challenges we had to address and our design choices. We

also report on our experience in running InfERL on Erlang

code at scale, supporting the messaging app used everyday

by over 2 billion people.

CCS Concepts: • Software and its engineering→ Auto-
mated static analysis.
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1 Introduction
WhatsApp is the largest messaging app on the planet. Over

2 billion people rely on it for their personal and business

communication, every day.

At Meta we develop a variety of tools to help programmers

write robust code. One such tool is Infer [5], an open source

static analyzer for C/C++/Objective-C/Java/C#. Infer scales

to large codebases comprising millions of lines of code, and

is used at Meta to check modifications of code [5, 8].

One part of the code — which has so far seen a limited

application of analysis tools — is the WhatsApp server code,

written in Erlang. On that code, at each code change, we

run a few simple linters as well as Dialyzer [13]. On the one

hand, the linters are shallow syntactic checks (e.g., warn if

the programmer tries to turn off Dialyzer warnings, or to

explicitly invoke garbage collection) and therefore give little

signal. On the other hand, although very useful, Dialyzer

performs a limited set of checks which does not cover all

WhatsApp needs.

In this paper we introduce InfERL, an Erlang extension

of the Infer static analyzer. InfERL is scalable; that is, the
analysis takes time linear in the number of functions in the

code, because it uses a compositional approach. Moreover,

InfERL is extensible; that is, new analyses can be easily added

without the need to hardcode them inside the analysis en-

gine. To define new checkers, users write specifications in

an automata-like style.

Extending Infer to support Erlang was done in two phases:

(1) developing a compiler from Erlang to the assembly-like

intermediate language understood by Infer’s backend; and (2)

extending Infer’s analysis engine to Erlang specific language

features. Compiling code into an intermediate language for

static analysis is a hard task. The compilation needs to strike

a balance between semantic precision and meaningful ab-

straction. For Erlang, it turned out to be particularly chal-

lenging due to its extensive use of higher-order functions,
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dynamic types, concurrency and fault tolerance. These fea-

tures also required extending Infer’s analysis engine in non-

trivial ways, even just to provide a basic level of support.

Examples include improvements for handling dynamic types

in the prover, and built-in models for Erlang’s data struc-

tures (e.g., tuples, lists, maps). We also implemented support

for user-defined models, given as configuration, to ease the

analysis of complicated code. Furthermore, we optimized

Infer’s engine for checking temporal properties, as it has not

yet been used at such a scale.

The key contributions of this paper are as follows: (1) We

introduce InfERL, a new scalable and extensible static an-

alyzer for Erlang. (2) We describe the technical challenges

and decisions of statically analyzing Erlang code in a com-

positional setting. (3) We give a report on the large-scale

industrial application of InfERL to WhatsApp server code.

2 Features and Examples
InfERL takes Erlang code as input and can detect a variety of

standard errors as well as check user-specified properties.
1

2.1 Reliability Issues
InfERL supports the reliability errors listed in the table below

(along with simple examples as illustration).

Issue type Example

Bad key M = #{}, M#{2 := 3}.

Bad map L = [1,2,3], L#{1 => 2}.

Bad record R = #rabbit{name="Bun"},
R#person.name.

No matching

branch in try

tail(X) ->
try X of [_|T] -> {ok,T}
catch _ -> error end.

No matching

case clause

tail(X) ->
case X of [_|T] -> T end.

No matching

function clause

tail([_|Xs]) -> Xs.

Nomatch of rhs [H|T] = [].

No true branch

in if

sign(X) -> if X > 0 -> pos;
X < 0 -> neg end.

2.2 User-Specified Properties
In addition to generic reliability issues, InfERL can be in-

structed to look for user-specified properties. These prop-

erties can be temporal, in the sense that they depend on a

sequence of events. A simple example is the following:

Are there any code paths in which file:write is
called after file:close?

1
Further details regarding the examples presented in this sec-

tion and instructions on running InfERL are available in

github.com/facebook/infer/blob/main/infer/src/erlang/README.md

To pose this question to the analyzer, we write it down for-

mally as in Figure 1a. This is an automaton, whose structure

is drawn in Figure 1b. When the property is checked on the

code in Figure 1c, function good is not flagged but function

bad is flagged. The difference is that good calls a function

(nop) with no side-effect, while bad calls a function (op) that
has the side-effect of closing the file. Notice that the analysis

is interprocedural.

Taint. Another kind of property that the user may specify

is an information flow query:

Does the value returned by a function source ever
end up as the argument of a function sink?

Technically, user-specified properties are compiled to non-

deterministic automata. The nondeterminism is useful, for

example, to track in parallel all tainted values.

Data transformation. It is also possible to pose the fol-

lowing query:

Does the value returned by a function source ever
end up as the argument of a function sink, even
if it was transformed by a function transform?

As an example, suppose that source returns a credit card

number, sink stores data in some database, and transform
takes a credit card number and returns its last four digits.

Then, the above query asks the analysis to identify code

paths that may store the last four digits (or all digits) of a

credit card in a database.

The formal semantics of these properties are defined in

terms of register automata [9].

3 Background and Challenges
3.1 Background
Our work is based on the Infer static analyzer [4]. Infer sup-

ports various languages (Java, C/C++, Objective-C, C#) via

frontends that compile to a common intermediate language

based on control flow graph (CFG) called SIL [3]. In the back-

end, Infer has multiple analyzers. In this work we rely on

Pulse [15] – one of Infer’s most powerful and actively main-

tained analyzers – and Topl, which is an extension of Pulse

for checking temporal properties described by automata. In-

fer implements a compositional, bottom-up interprocedural

analysis based on function summaries [6]. Its compositional

analysis is performed by synthesising summaries for a piece

of code in isolation, usually a function. Summaries are Hoare

triples where pre/post-conditions are separation logic for-

mulae [6, 10] . Summaries only talk about the footprint of

a function. This fact combined with the idea of frame infer-

ence [3] from separation logic, allows Infer to avoid huge

summaries that explicitly tabulate most of the input-output

possibilities. The theoretical notion allowing Infer to synthe-

sise pre and post-conditions in summaries is bi-abductive

inference [6] which consists of automatically inferring parts
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property WriteAfterClose
start -> start: *
start -> closed: "file:close/1"(A,Ret) => f:=Ret
closed -> error: "file:write/2"(F,D,Ret) when F==f

(a) User-defined property

start closed error

(b) Structure of the property

good(F) -> nop(F), file:write(F, "hi").
bad(F) -> op(F), file:write(F, "hi").
nop(_) -> ok.
op(F) -> file:close(F).

(c) Erlang code

Figure 1. When the property (a) is checked against the code (c), an error is reported in function bad.

of the program state that are needed to perform a certain

computation. Summaries of procedures in a program are

composed together in a bottom-up fashion to obtain sum-

maries of larger pieces of code. For example, when a function

f calls function g, Infer uses the summary of g when ana-

lyzing f. Infer generally tries to be under-approximating to

avoid false positives. But that’s not a strong requirement and

occasionally, for pragmatic reasons, it over-approximates

(e.g., unknown functions) [15].

3.2 Challenges
To add support for Erlang, we must pay particular attention

to language features distinct from those in already supported

languages. We list various challenges here, some of which

have been addressed, and some left as future work, as de-

scribed in later sections.

Functional. Erlang programs use recursion, closures and

higher-order functions to a far greater extent than programs

written in languages already supported by Infer. In the con-

text of a summary-based program analysis, the standard

solution to handle recursion is to compute a fixed-point (it-

eratively update summaries until there is no change). Infer

used to do this, until experiments showed that computing

a summary at most once per function is faster and leads to

results that developers find just as useful. However, Erlang

programs might require a fixed-point computation.
2

Closures are challenging too, as Erlang has no explicit

variable declarations and thus, we need to clarify the rules

about which variables are captured and which are local.
3

Furthermore, we have to decide how to proceed in the analy-

sis when an unknown closure is invoked. For example, when

executing F() in the code F=fun ()->ok end, F() the clo-

sure is known to the analysis; but, in the code g(F)->F(), it
is unknown (due to the compositional nature of the analysis).

Let it crash. In Erlang there is no hard distinction be-

tween user exceptions (that are expected to be thrown and

caught in normal execution) and runtime exceptions (that

should never be thrown). An analysis that can identify those

places where an exception is thrown and never caught has

to be a top-down analysis or, at least, aware of what is the

2
With a fixed-point computation, a function may be analyzed multiple times,

which means that the analysis time may become superlinear in the number

of functions.

3
For example, we found situations in which the compiler and the interpreter

disagreed: github.com/erlang/otp/issues/5379

entry point of the program. Furthermore, supervisors can

detect situations in which a process ends with an exception,

and then take appropriate measures. In essence, a supervisor

provides an extra-level of fault-tolerance (similar to catching

exceptions), which is more dynamic and harder to analyze

statically.

Dynamic typing. Erlang uses dynamic types pervasively:

every pattern match involves making decisions based on the

dynamic type of the value being matched. Infer has some

basic support for dynamic types, but as detailed later it turned

out to be incomplete as it was rarely used in other languages.

A further challenge related to dynamic types and pattern

matching is that, strictly speaking, a pattern match is seldom

complete. For example, a function might have clauses for

empty and non-empty lists, but not for other types. From

the analyzer’s point of view, it is hard to decide whether

non-exhaustiveness is a mistake or intended (let it crash).

Concurrency. Erlang was designed with concurrency in

mind, having built-in primitives for sending and receiving

messages, and widely used libraries (like gen_server) to pro-
vide high-level abstractions. The main challenge in handling

built-in primitives is to figure out which receive may han-

dle a message from a send. This is difficult partly because the

target of a message is computed dynamically; for example,

it could be itself received as content of a previous message.

Furthermore, higher-level abstractions (such as gen_server)
may require special treatment.

Scalability. Scalability is a well-known challenge in pro-

gram analysis. However, in our case it is worth explicitly

calling it out as WhatsApp server is one of the biggest Erlang

codebases and our analysis must be suitable to run in a rea-

sonable time to provide early signals to developers. By their

approximate nature, Infer’s analyzers tend to have a good

scalability by sacrificing some coverage. However, certain

Erlang constructs might need special approximations. For

example, Erlang has a variety of widely used, built-in data

structures, including unbounded ones, such as lists or maps.

Infer has support for data structures (e.g., we can define a

Cons structure with a head and tail field), but unbounded
structures in other languages are typically handled with ap-

proximations that provide a good trade-off for the particular

use cases. For example, Java maps use a recency abstraction

of storing only the most recent key, which is sufficient to de-

tect the common error of accessing a key without checking
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its existence first. We present some of such approximations

for Erlang in the following sections.

4 Compilation and Analysis Details
An overview of InfERL’s architecture is illustrated in Figure 2.

In our work, we added a new frontend to support Erlang.

For analysis, we leveraged Pulse, with some Erlang specifics

added, and Topl, with some optimizations. The output of

Infer is a list of issues (with traces) that is picked up by the

reporting phase in the Meta CI to raise signals to developers.

The parts within Infer (highlighted by a dashed rectangle)

are available as open source at github.com/facebook/infer.

Infer

CFGs

Java frontend

C++ frontend…

Erlang frontend

Frontend

Topl

Pulse

…

Parser Validator

Scopes Compiler

Erlang
code

Custom models

Backend

Issues

Reporting

Signals

Signal boosting

Prod matching

User def.
property

User def.
models

erlc/Rebar3

OTP
specs

Figure 2. Overview of InfERL’s architecture.

4.1 Compilation to SIL
The frontend invokes erlc or rebar3 to compile Erlang code

into beam files, with the debug_info option enabled. Such

beam files include the AST of the Erlang code. The next

stages of the frontend are modular, that is, each beam file is

processed without knowledge of the other beam files. Indeed,

we leverage modularity to process beam files in parallel. For

each beam file, the next stages are (1) parsing the ASTs, (2)

performing basic validation, (3) doing scope analysis (to de-

termine local/captured variables), and (4) compiling each

Erlang construct to CFG nodes and instructions in the inter-

mediate language SIL. Optionally, InfERL can be instructed

to extract type specs from OTP functions (by discovering

beam files of the default OTP version available) to make the

analysis more precise (see later). The frontend is extensible

to support Elixir as well with minor modifications.

Modules and functions. Modules are processed indepen-

dently. Each function is translated to a SIL procedure with a

corresponding CFG in Infer. On entry, the procedure loads

the arguments into fresh variables and matches them against

the patterns of the first function clause. On successful match-

ing, the function body is executed, otherwise control flows

to matching the pattern of the next function clause, and so

on. If there are no more clauses, we report the “no matching

function clause” error.

Expressions. Translation covers a significant portion of

Erlang expressions, patterns and guards, including literals,

variables, blocks, match/case/if expressions (with non-match

errors), lists (nil, cons, comprehensions), maps, records, tu-

ples, binary/unary operators, send, and receive. Certain fea-

tures are currently supported with limitations or approxima-

tions: try/catch assumes that no exceptions happen, lambdas

cannot be named, and not all forms of dynamic calls are sup-

ported. Furthermore, bitstrings, floats, strings and related

operations are not supported. This fragment of Erlang was

enough for us to start experimenting, but we continuously

add/improve support for missing/limited features.

Type specs. Our initial experiments revealed that many

false positives come from potential non-exhaustive pattern

matching. For example, consider the following code:

revapp(Xs, []) -> Xs;
revapp(Xs, [Y|Ys]) -> revapp([Y|Xs], Ys).

The pattern matching seems to be complete at a first sight,

but one can call revapp with, say, a tuple as the second

argument. It is not clear whether it is a mistake or intentional

(let it crash). Our current solution is to rely on specs, such as

-spec revapp(list(), list()) -> list().

With the spec, we do not report a non-match error anymore

because pattern matching is complete w.r.t. the spec.

A similar problem occurs when we pattern match on the

result of a function whose implementation is not seen by the

analysis (e.g. a builtin function for which we don’t have any

model yet). Consider the following code:

min(Xs) -> case lists:sort(Xs) of
[] -> {error};
[X|_] -> {ok,X} end.

In this example, we again rely on the spec of lists:sort
(extracted from OTP beam files) to deduce that the pattern

match is exhaustive. Note that we don’t perform type check-

ing, but assume that other tools can ensure that the code is

well typed [12, 19].

4.2 Erlang Support in Pulse
Pulse provides good scalability, but comes with some trade-

offs: the size of the summary (which roughly correspond to

the number of execution paths explored) for each function

is limited, and loops (coming for instance from list compre-

hensions) are only unrolled to a bounded depth. In order to

support Erlang, we added Pulse models for the built-in data

structures (lists, tuples, records, maps), library functions, and

certain expressions (e.g. list append). Furthermore, the per-

vasive use of dynamic types in Erlang uncovered problems

in Pulse (such as information about dynamic types some-

times being lost during normalization of formulas) that we

fixed.This also benefits other languages in Infer.

Data structures. We implemented full support for tuples

and records. Lists are also supported, but list comprehensions
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(modeled as loops) are approximated to a configurable loop

unrolling bound. Maps use a recency abstraction where only

the latest key/value is stored.

Higher-order functions. Infer’s current support for high-
er-order functions is limited. Proper support was recently

added for closures that capture variables.Still, full support

for closures requires handling unknown closures, as in our

g(F)->F() example. To do so, we plan to explore two ap-

proaches: defunctionalization and specialization.

Defunctionalization [17] is a global program transforma-

tion that removes all uses of higher-order functions but pre-

serves semantics. Being global means that we cannot apply

it to the program fragment g(F)->F() — we must know

the whole program. In particular, we need to know what

anonymous function definitions appear in the program text.

Specializationmeans that whenever the analyzer finds a

call to g with a known closure, it creates and analyzes a

special version of g in which F is the known closure. Con-

ceptually, this is similar to on-demand inlining of the calls to

function g. The advantage of specialization is that it is lan-

guage agnostic (for example Objective-C also has closures)

and does not require whole program analysis. The downside

is that it does not work for mutually recursive higher-order

functions. We also observed that most of the higher-order

functions in our codebase are from Erlang’s standard library,

which allows us to inline/specialize such calls, as well as

define custom Pulse models for the most common ones.

Concurrency. send expressions are currently modeled as

a no-op, and receive is approximated by returning a non-

deterministic value (or timeout). However, we do have plans

to add better support for them. Pulse/Infer relies heavily on

special treatment of function calls to achieve its composi-

tionality and scalability. Message passing can be viewed as

a generalization of function calls. When Pulse/Infer would

reach a receive expression, it should first figure out all

possible corresponding send expressions, and then rely on

summaries of those send expressions. Connecting send and

receive expressions could be done by some pre-analysis

or even under-approximated by a dynamic analysis. Con-

versely, whenever a send statement is processed, the analysis

would have to produce a summary for it. Finally just as there

should be a fixed-point computation for the summaries of

functions (when we have mutual recursion), there should

also be a fixed-point computation for the summaries of send
expressions (when we have messages going back-and-forth

between processes).

We do not support higher-level abstractions of concur-

rency, such as gen_server. However, we do have plans

for them: gen_server is essentially used to implement (dis-

tributed) objects/actors. One typical use is to (a) send a re-

quest, (b) handle the request by updating the state and com-

puting a response, and (c) send back the response. Parts (a)

and (c) are similar to calling and returning from a method.

Updating the state of the server process (b) is similar to how

methods update object fields. Finally, spawning a server pro-

cess using a certain module for its implementation is similar

to instantiating an object from a certain class. Thus, a natural

way to handle code using gen_server is to treat servers as

objects, which Infer supports for other languages.

Operators. Comparison operators are currently limited to

integers. List subtraction is not yet supported, and appending

is approximated only up to a configurable total length.

Library functions. We provide models for a few, com-

monly used library functions (e.g. for maps, lists and certain

BIFs). However, most OTP functions are modeled by their

spec only: we assume a non-deterministic return value, but

with the correct type. Furthermore, we allow user-defined

models for Erlang functions, provided by the developers in a

configuration file.

4.3 Topl
Topl is a pre-existing analyzer in Infer for checking user-

defined properties, as seen in Section 2.2. It was, however,

not routinely used on large codebases, and we noticed that

it does not scale as well on WhatsApp server. The lack of

scalability manifested by giving up on exploring some ab-

stract states because an internal limit was hit. To hit the

limit on abstract states less often, we implemented several

optimizations. First, when the limit is reached, we use a more

expensive normalization procedure, to identify equivalent ab-

stract states. Second, we added support for dynamic types in

Topl’s solver, which led to more abstract states being identi-

fied as unsatisfiable. And third, we added a garbage collector:

if an abstract state tracks values that became unreachable in

the program, we drop it.

Apart from performance, deploying on a large codebase

revealed two more problems. One problem is that sometimes

code complexity leads to timeouts in Pulse and, since Topl

works on top of Pulse, this leads to lack of Topl coverage.

We addressed this problem by adding custom Erlang models

to Pulse, as described in the previous section. Such models

effectively tell the analysis to not analyze certain (compli-

cated) functions in the codebase and, instead, make some

simple (and configurable) assumptions about their behavior.

Another problem is that the language used to describe user-

defined properties is not friendly to Erlang programmers.

To address this, we plan to provide an Erlang-specific lan-

guage (in addition to the current one which works in terms of

Infer’s intermediate representation, thus being language ag-

nostic). And, further, we plan to allow for easy specification

of classes of properties; for example, a taint property could

require just a list of sources and sinks, and the corresponding

automaton would be hidden from users.
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5 Deployment on WhatsApp Server Code
Test functions. We developed an extensive set of tests,

consisting of more than 700 small Erlang functions.
4
Each

function targets a specific language feature, including corner

cases. Some functions are expected to succeed and terminate,

while some are expected to crash. We compile and run these

functions with Erlang, and separately we analyze them using

InfERL. In both cases we compare the results with fixtures to

cross check that the results match expectations (i.e. InfERL

reports an issue if and only if the function crashes when

executed). This checks that the compilation and analysis

agree on Erlang’s semantics.

WhatsApp server. InfERL is part of the continuous inte-

gration process (CI) at Meta. The analysis is fast enough to be

ran hourly. InfERL scans the main branch of the WhatsApp

server’s codebase and files alarms for detected issues to code

owners automatically. Code ownership is based on source

control commit history or explicit specification by author or

team in the module. This approach has been widely practiced

at Meta for multiple types of code analyses, such as earlier

Infer deployments [8] and dynamic analysis deployments of

Sapienz [1] for mobile apps, and FAUSTA [14] for WhatsApp

server. One widely reported challenge of deploying static an-

alyzers at scale in industry is the potential high false positive

(false alarm) rate of reported issues [7, 11]. When deploy-

ing InfERL, we set a high standard on developer experience,

which assumes low tolerance on false positives. However,

the initial deployment of InfERL has found thousands of false

positives, mostly due to missing features, approximations,

or limitations in Pulse’s solver.

Prod matching. In order to meet our tight FP tolerance,

we perform prod matching, i.e. report detected issues priori-

tizing on presence in our production data collected during

runtime. The main challenge of this process is to map an

InfERL detected issue to the error log with the same cause

in production. InfERL implements this by categorizing its

detected issues based on traces and locating to a line that

is mostly likely the root cause, taking into consideration

possible line number shifts due to recent checked-in code.

We deployed some user-specified (taint) properties, which

resulted in 200 issues being found. With prod matching we

surfaced 21 of them to developers. Out of these, developers

found 2 to be high-priority and 1 to be very high-priority, and

fixed them. Reporting issues already happening in produc-

tion is still useful because Infer provides traces, and errors

involving sequences of events can be hard to find in logs.

However, as the precision of our analysis increases, we plan

to deploy it to run before changes are shipped to production.

Signal boosting. Issues discovered by InfERL may have

already been detected by other testing and verification tools.

4
github.com/facebook/infer/tree/main/infer/tests/codetoanalyze/erlang

Raising issues to developers directly in such cases would

cause duplication that harms their experience. This is a com-

mon problem in industry when working with a large scale

codebase that requires various types of testing and analysis.

One technique that has been exercised in industry is signal

boosting. Instead of duplicating alarms, when the same issue

has been detected by multiple tools (e.g., dynamic and static

analyses), our CI treats the issue as legit with a higher con-

fidence and notifies developers about the new alarm in the

original report. In addition, different tools provide different

information about the error, thus helping developers better

understand the underlying issue.

6 Related Work
Infer has been successfully deployed at scale for various

repositories at Meta [5, 8] and outside [2, 16, 18].

Dialyzer [12] is likely the most widely deployed static

analysis tool for Erlang, bundled with the Erlang/OTP distri-

bution. Our work makes a different trade-off for false posi-

tives compared to Dialyzer: InfERL will report an error when

it finds an erroneous execution, whereas Dialyzer will only

report an error when it happens for all inputs.

RefactorErl [20] is an Erlang source code analyzer and

transformer tool, providing a similar translation of Erlang to

a CFG format facilitating static analysis. However, its main

focus is on source transformations that do not change the

semantics of the code rather than extracting signals.

FAUSTA [14] is a dynamic analysis system, also running

on WhatsApp server. It tracks taint by creating unique ran-

dom strings at sources and checking for them at the sinks.

The FAUSTA approach has a high chance of detecting a

dataflow between a source and sink, given the dataflow oc-

curred in the program executions FAUSTA considers. InfERL

on the other hand can consider all paths, but it might miss

dataflows due to abstractions needed to run the analysis at

scale. Therefore the two approaches are complementary.

7 Conclusions
In this paper we presented InfERL, a scalable and extensible

static analyzer for Erlang code. InfERL adds a new frontend to

Infer and extends its backend analyzers Pulse and Topl. Our

recent deployment of InfERL at WhatsApp shows promising

results (especially with user-defined properties), but also

highlights challenges for future improvements.
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