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Abstract
In this paper we introduce a novel method for improving static anal-
ysis of real code by using dynamic analysis. We have implemented
our technique to enhance the Infer static analyzer [6] for Erlang
by supplementing its analysis with data obtained by FAUSTA [24]
dynamic analysis. We present the technical details of the algorithm
combining static and dynamic analysis and a case study on its
evaluation on WhatsApp’s Erlang code to detect software defects.
Results show an increase in detected bugs in 76% of the runs when
data from dynamic analysis is used. In particular, on average, data
provided by dynamic analysis for 1 function enables static anal-
ysis of 2.1 additional functions. Moreover, dynamic data enabled
analysis of a property not verifiable using static analysis alone.
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1 Introduction
Source code analyses are techniques to check whether the code
satisfies a specification or to detect violations of this specification
and therefore detect defects in the program. Traditionally there are
two kinds of approaches: static and dynamic.

Static analysis typically builds a model describing a set of poten-
tial behaviours that the code will have at run-time. The static analy-
sis can be over-approximating if the model describes a super-set of
all the possible behaviours of the program or under-approximating
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if the model represents a subset. By definition, an over approximat-
ing static analysis has spurious behaviours which may lead to false
positives. In contrast, an under-approximating static analysis might
miss behaviors, leading to false negatives.

Dynamic analysis works by generating inputs, running the pro-
gram on those inputs, and checking an oracle on the behaviour of
the run. Because only a finite set of runs can be executed, dynamic
analysis always under-approximates. However, as dynamic runs
are concrete, detected bugs are by definition true positives.

Compositionality – such as [8] – allows static analysis to scale
to large code bases (e.g. millions of lines of code). At a high-level,
compositionality means that the specification of a function is ob-
tained by composing the specifications of the functions it calls (its
callees), looking at the code of the caller but not looking at the code
of the callees. The analysis usually follows the call graph: it starts
from the leaves and walks its way up to the root1.

During a compositional analysis, sometimes the analysis of a
procedure 𝑝 ( ®𝑥) fails. This has two negative effects: first, no con-
clusions can be drawn for 𝑝 ( ®𝑥); second, the failure has a knock-on
effect hindering the analysis of dependent procedures (i.e. those
that transitively call 𝑝 ( ®𝑥)), reducing therefore the overall analysis
coverage in a code base.

In this paper, we introduce a novel technique to combine static
and dynamic analysis which helps resolve the above shortcoming
of compositional static analysis. The idea is to use dynamic analysis
to synthesize specifications for those procedures 𝑝 ( ®𝑥) for which
static analysis fails. This avoids the knock-on effect on procedures
that transitively call 𝑝 ( ®𝑥), enabling their static analysis. We call
dynamic specifications those produced by dynamic analysis in con-
trast to static specifications derived by static analysis. Dynamic
specifications are obtained with a process of symbolic abstraction
from concrete input/output pairs observed by the dynamic analysis
while running the program. Dynamic specifications are then used
to enhance subsequent runs of static analysis.

1There are other scheduling strategies, and a fixed-point computation might be needed
when recursion is used. However, for simplicity, in this paper we will assume the
bottom-up strategy following the call graph.
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We have experimented with our technology by enhancing the
PrivacyCAT [23] analysis on WhatsApp’s code. PrivacyCAT is a
tool developed at WhatsApp that is used internally to automatically
detect possible privacy vulnerabilities helping therefore program-
mers ship more robust code, from the privacy point of view. Ex-
periments at WhatsApp show that the combination between static
and dynamic analysis substantially increases the effectiveness of
the original static analysis both in terms of software defects de-
tected and coverage. In particular, 76% of the runs with dynamic
specifications detect more bugs, and on average, every dynamic
specification allows us to infer 2.1 new static specifications.

In summary, this paper makes the following main contributions:
i. It introduces a novel technique to enhance static analysis by
means of dynamic analysis.We present the general algorithm
and describe its theoretical foundations.

ii. We implemented the technique in a tool able to run hourly
on large scale industrial software.

iii. We report an industrial case study at WhatsApp. This case
study provides empirical data on a large Erlang code-base
showing the effectiveness of the technique.

The remainder of this paper is organized as follows: Section 2
provides background information on both static and dynamic anal-
ysis techniques. Section 3 explains the motivation behind this work
and how dynamic analysis is used to enhance static analysis. Sec-
tion 4 details the symbolic abstraction process. Section 5 presents a
case study evaluating our approach on real-world industrial code.
In Section 6, we provide an overview of related work, and finally,
Section 7 concludes with a summary of our findings.

2 Background
PrivacyCAT [23] is a system composed of different code analyzers
to check given privacy rules. PrivacyCAT consists of two separate
analyses: static PrivacyCAT and dynamic PrivacyCAT. There are
two reasons why both analyses are utilized. First, dynamic and
static analyses have different strengths: dynamic analysis only ex-
plores real executions; static analysis can see executions missed
by the dynamic one; dynamic analysis is easier to extend to cover
multi-language codebases, for example including both a client and
a server [9]. Second, dynamic and static analyses offer comple-
mentary diagnostic information: dynamic analysis offers a way to
reproduce the problematic execution and a stack trace at the viola-
tion time; static analysis offers a trace akin to stepping through the
code, thus covering several time moments, ending at violation time.
Before describing how to combine static and dynamic analysis let’s
give a brief intro of both.

2.1 Static Analysis
The work in this paper is based on the Infer static analyzer [6, 19].
Infer supports various languages (including Java, Kotlin, C/C++,
Objective-C, C#, Erlang) and it is used by several software compa-
nies. For example, Meta uses it multiple times everyday to analyze
most of their code-bases [7, 12]. Infer is based on Abstract Interpre-
tation [11] and implements a compositional, bottom-up interpro-
cedural analysis using function summaries [8]. Its compositional
analysis is performed by synthesising summaries for a piece of
code in isolation, usually a function. Summaries are Hoare triples

where pre/post-conditions are separation logic formulae [8, 20].
More specifically, for a given piece of code C, Infer synthesises a
triple of the form

{𝑃} 𝐶 {𝑄}
by inferring suitable 𝑃 and 𝑄 which are formulae in a subset of
Separation Logic [3, 13]. 𝑃 and 𝑄 describe the state of the program
before and after the execution of 𝐶 , respectively.

Summaries only talk about the footprint of a function. This fact,
combined with the idea of frame inference [2] from separation logic,
allows Infer to avoid huge summaries that explicitly tabulate most
of the input-output possibilities when performing interprocedural
analysis. The theoretical notion allowing Infer to synthesise pre
and post-conditions in summaries is bi-abductive inference (or bi-
abduction) [8]. It consists of automatically inferring parts of the
program state that are needed to perform certain computations.
Formally, bi-abduction involves solving the following extension of
the entailment problem:

𝑆1 ∗𝐴 ⊢ 𝑆2 ∗ 𝐹
where 𝑆1, 𝑆2 are given formulae in separation logic describing states,
whereas 𝐹 (frame) and 𝐴 (anti-frame) are unknown and need to be
automatically inferred by a theorem prover. Summaries of proce-
dures in a program are composed together in a bottom-up fashion
to obtain summaries of larger pieces of code. For example, when a
function 𝑓 ( ®𝑥) calls function𝑔( ®𝑦), Infer uses the summary computed
for 𝑔( ®𝑦) when analyzing 𝑓 ( ®𝑥).

2.1.1 TOPL. Temporal Object Property Language (TOPL) [18] is a
language for specifying user-defined properties. It has an engine
built on top of Infer that checks whether the property holds for a
given program. Similar to other temporal logics, TOPL properties
are expressed in terms of state machines. Here is an example of a
typical property modeling taint analysis:

p r ope r t y Ta in t
s t a r t −> s t a r t : ∗
s t a r t −> t r a c k : " s ou r c e " ( Ret ) => da t a : = Ret
t r a ck −> e r r o r : " s i nk " ( Arg , Ret ) when Arg{ da t a

The state machine has three states: start, track, and error.
There is a non-deterministic loop transition in the start state to
be able to track multiple instances of tainted data. Then, if we see a
call to a function named source with arity zero, we store its return
value in the data register of the state machine and go to the track
state. Finally, if we see a call to function sink with arity one where
the argument is a term containing the term we stored in data (or
in other words, if data is reachable from the argument following
the heap), we go to the special error state and report the violation.

Under the hood, TOPL is built on top of Infer’s Pulse analy-
sis [25], which performs symbolic execution over the program.
TOPL augments Pulse by defining a monitor based on the property
(state machine) and performing abstract interpretation over both
the program and the monitor.

2.2 Dynamic Analysis
Dynamic code analysis consists of actually executing the code we
want to analyze on a range of inputs (in contrast to static analysis,
which does not execute the code). To be effective, the analysis
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should use inputs that will achieve a wide coverage of the code.
FAUSTA [24] is a traffic generation system used at WhatsApp for
analysis of reliability issues such as crashes. FAUSTA’s traffic data
generators materialize server inputs (called stanzas) based on client-
server communication specifications and send these inputs to the
server.

Dynamic PrivacyCAT extends FAUSTA’s materialization pro-
cess to perform taint analysis [23]. It taints some of the input data
to check for leakage of personally identifiable information (PII).
In addition it instruments the server using the same instrumenta-
tion as tests. Such instrumentation enables profiling on coverage,
stack trace and tracing of tainted values. The code under analysis
runs in a non-production, controlled environment to prevent the
instrumentation from introducing any side effects to production.

3 Combining Static and Dynamic Analysis
In this section we describe how dynamic analysis is used to improve
coverage and precision of static analysis.

3.1 Motivation
Compositional static analysis works by composing together analy-
sis results of small parts of the code (usually a function or procedure)
to compute the analysis result of a larger part of the code. For exam-
ple, analysis results of callees are used to compute the analysis result
of the caller. In our case, analysis results are procedure summaries
expressed in terms of pre/post-conditions:

{𝑃} 𝐶 {𝑄}
Such triples are synthesized by Infer. For example consider the fol-
lowing prepend function written in C, which prepends an element
to a list:
void prepend(Node * E, Node * X) {

E->next = X;
}

A summary for this function could be:

{𝐸 ↦→ − ∗ 𝑙𝑖𝑠𝑡 (𝑋 )} prepend(E, X) {𝑙𝑖𝑠𝑡 (𝐸)} (1)

where 𝐸 ↦→ − denotes a cell allocated to address 𝐸 with some value,
and 𝑙𝑖𝑠𝑡 (𝑋 ) stands for an allocated list starting at address 𝑋 . In
words the spec above says: if prepend is called with an allocated cell
pointed to by 𝐸 and a list pointed to by 𝑋 , then after the execution
𝐸 points to a list.

However, in reality, synthesizing static summaries for a function
𝑓 can fail for several reasons. For example, the code could be too
complex for the analysis engine, or the computation may take too
long and times out. When the derivation of the summary fails, the
analysis of 𝑓 and of all functions depending on 𝑓 becomes incon-
clusive. In turn, this cascade effect is problematic as it limits the
analysis coverage and has an unfortunate side effect: false negatives
(missing possible bugs).

3.2 The Dynamically-Enhanced Static Analysis
Algorithm

In this paper we assume a fixed finite set Vars of program variables
(ranged over by 𝑥,𝑦, . . . ), and an infinite set LVars of logical vari-
ables (ranged over by 𝑥 ′, 𝑦′, . . . ). The logical (or primed) variables

will not be used within programs, only within logical formulae
(where they will be implicitly existentially quantified). Moreover,
let Vals be a set of values, and FNames be the set of functions names.

Dynamic Summaries. The dynamic analysis runs the code start-
ing from inputs either generated by FAUSTA or from tests.

We define a concrete state of a program as a partial map from
variables to values:

𝜎 : Vars ⇀ Vals
Let Σ be the set of concrete states 𝜎 of a program. Let a run of
a program be a sequence of concrete states 𝜎0𝜎1𝜎2 · · · ∈ Σ∗. We
indicate with [|𝐶 |] the semantics of a program 𝐶 consisting of all
the runs 𝐶 can have at run-time. We define a dynamic summary (or
dynamic specs) to be a triple

[𝜎𝐼 ] 𝑓 ( ®𝑥) [𝜎𝑂 ]
where 𝜎𝐼 , 𝜎𝑂 ∈ Σ are states of the program. The semantics of the
triple is: there exists a run𝜎0𝜎1𝜎2 · · · ∈ [|𝐶 |] such that 𝑓 ( ®𝑥/𝜎𝐼 ) = 𝜎𝑂 .
In words: there exists a run of the program such that the function 𝑓

when called with the concrete state 𝜎𝐼 results in the concrete state
𝜎𝑂 .

For example, for the prepend function above, we could observe
the following I/O triples:

[𝐸 ↦→ 6 ∗ 𝑋 ↦→ {0, 1, 2}] prepend(E, X) [𝐸 ↦→ {6, 0, 1, 2}]
[𝐸 ↦→ 7 ∗ 𝑋 ↦→ {6, 0, 1, 2}] prepend(E, X) [𝐸 ↦→ {7, 6, 0, 1, 2}]
[𝐸 ↦→ 8 ∗ 𝑋 ↦→ {7, 6, 0, 1, 2}] prepend(E, X) [𝐸 ↦→ {8, 7, 6, 0, 1, 2}]
[𝐸 ↦→ 9 ∗ 𝑋 ↦→{8, 7, 6, 0, 1, 2}]prepend(E, X) [𝐸 ↦→{9, 8, 7, 6, 0, 1, 2}]
In the rest of the paper we indicate by D the set of all dynamic
summaries for all functions.

Static Summaries. We have mentioned before that static sum-
maries are Hoare’s triple of the form

{𝐻1} 𝐶 {𝐻2}
where𝐻1 and𝐻2 are formula in a certain logic. In this paper we use
𝐻1, 𝐻2 to be symbolic heaps as defined in [3, 13]. More precisely, a
symbolic heap 𝐻 consists of a finite set of equalities and a finite set
of heap predicates. The equalities 𝐸 = 𝐹 are between expressions 𝐸
and 𝐹 , which are program variables 𝑥 , or primed variables 𝑥 ′ or a
value 𝑣 ∈ Vals. The heap predicates describe dynamically allocated
data such as lists. A symbolic heap describes a set of concrete
program states. We indicate byH the set of all symbolic heaps and
by S the set of all static specifications.

The Algorithm. One first observation is that static summaries
like (1) can be seen as an abstract way to describe a set of concrete
dynamic specs. In other words, there should exist an abstraction
function

𝛼 : Σ→H
mapping a triple [𝜎𝐼 ] 𝑓 ( ®𝑥) [𝜎𝑂 ] onto a static specification
{𝛼 (𝜎𝐼 )} 𝑓 ( ®𝑥) {𝛼 (𝜎𝑂 )}. Hence, the key idea in this paper is to utilize
concrete I/O values observed by running a dynamic analysis to
synthesize static summaries which in turn could be used to enhance
static analysis.

To implement this idea we adopt the following strategy. We use
tracing to collect relevant (𝜎𝐼 , 𝑓 , 𝜎𝑂 ) triples from dynamic analy-
sis runs for all functions 𝑓 that static analysis has failed to ana-
lyze. Note that since Erlang is a mostly pure language, it is usually
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enough to record functions’ arguments in 𝜎𝐼 and their return value
in 𝜎𝑂 . We transform these I/O triples into static specifications us-
ing the abstraction map 𝛼 defined in Section 4. We then use the
synthesized static summaries in later runs of the static analysis to
increase its coverage on functions which were not previously stati-
cally analysable. The iteration can be repeated to further improve
coverage. This process is described in Algorithm 1.

Algorithm 1 Dynamically-Enhanced Static Analysis

1: (SSpecs,𝑊𝑠 ,𝑈𝐹 ) ← SAnalysis(CodeBase, ∅);
2: 𝑊all ←𝑊𝑠 ;
3: while𝑈𝐹 ≠ ∅ do
4: (𝐷𝑈𝐹

,𝑊𝑑 ) ← DAnalysis(CodeBase,𝑈𝐹 );
5: SDSpecs← 𝛼𝑆𝑝𝑒𝑐 (𝐷𝑈𝐹

);
6: (SSpecs,𝑊 ′𝑠 ,𝑈 ′𝐹 ) ← SAnalysis(CodeBase, SSpecs∪SDSpecs);
7: 𝑊all ←𝑊all ∪𝑊𝑑 ∪𝑊 ′𝑠 ;
8: if 𝑈𝐹 =𝑈 ′

𝐹
then break ;

9: 𝑈𝐹 ← 𝑈 ′
𝐹
;

10: end while
11: return𝑊all ;

LetW be the set of all warnings that can be reported by static or
dynamic analysis. Moreover, let D[𝑓 ] be the set of all the possible
dynamic summaries for 𝑓 ( ®𝑥). We write 𝐷 𝑓 ⊆ D[𝑓 ] for the set of
observed dynamic summaries for 𝑓 ( ®𝑥) during a run of the dynamic
analysis. Both D[𝑓 ] and 𝐷 𝑓 can be lifted to a set 𝐹 of functions:
D[𝐹 ] = ⋃

𝑓 ∈𝐹 D[𝑓 ] and 𝐷𝐹 =
⋃

𝑓 ∈𝐹 𝐷 𝑓 .
We assume a function implementing a compositional static anal-

ysis:
SAnalysis : C × 2S → 2S × 2W × 2FNames

taking the code to analyse (CodeBase ∈ C) and a set of function sum-
maries 2S . The latter constitutes a cache of specifications to be used
by the compositional analysis. It returns a new set of specifications
computed during the analysis, a set of warnings (i.e., possible bugs
detected in the code), and a set of non-analyzed function names,
for which the analysis has failed to give results. We will refer to
these functions as unspecced functions. Moreover, we assume the
function implementing dynamic analysis:

DAnalysis : C × 2FNames → 2D × 2W

taking a program to analyse, a set of unspecced functions 𝑈𝐹 ∈
2FNames , and returning a set of dynamic summaries 𝐷𝑈𝐹

⊆ D[𝑈𝐹 ]
for 𝑈𝐹 , and a set of warnings. Note that the dynamic analysis may
not finds specs for some unspecced functions, that is, a function
𝑓 ∈ 𝑈𝐹 might exist such that 𝐷 𝑓 = ∅ (and D[𝑓 ] ∩ 𝐷𝑈𝐹

= ∅).
Algorithm 1 first runs static analysis from scratch on the code

base with an empty cache of function specifications (line 1). The
result is: a set of static specifications SSpecs, a set of warnings
𝑊𝑠 , and a set 𝑈𝐹 of unspecced functions where the analysis failed.
Then dynamic analysis is run at line 4. It takes as input the set
of unspecced functions for which we want to find dynamic specs.
It returns a set of warnings𝑊𝑑 and a set of I/O triples 𝐷𝑈𝐹

. We
abstract these dynamic specifications obtaining a new set of static
specifications SDSpecs (line 5). We run again static analysis with an
augmented cache comprehending both SSpecs and SDSpecs (line 6).
We continue to iterate over dynamic and static analysis on as long

we increase the spec coverage, i.e. we reduce the set of unspecced
functions. During the execution of the algorithm we collect in𝑊all
the set of warnings detected by both static and dynamic analysis
and we return it to the user at the end.

Theorem 3.1. Algorithm 1 terminates.

Proof. Let𝑈 𝑖
𝐹
be the 𝑈𝐹 set of the 𝑖-th iteration, where𝑈 0

𝐹
= 𝐹 .

We can prove by induction that

𝑈 𝑖+1
𝐹 ⊆ 𝑈 𝑖

𝐹 (2)

Let’s prove the base case 𝑈 1
𝐹
⊆ 𝑈 0

𝐹
. If 𝑓 ∈ 𝑈 1

𝐹
then 𝑓 is not in

the cache of the static analysis at iteration 1, i.e. 𝑓 ∉ 𝑆𝑆𝑝𝑒𝑐0 ∪
𝑆𝐷𝑆𝑝𝑒𝑐0. By contradiction assume 𝑓 ∉ 𝑈 0

𝐹
then 𝑓 has a spec, that

is 𝑓 ∈ 𝑆𝑆𝑝𝑒𝑐0 which implies 𝑓 ∉ 𝑈 1
𝐹
which in turn contradict our

hypothesis that 𝑓 ∈ 𝑈 1
𝐹
.2 Therefore we conclude𝑈 1

𝐹
⊆ 𝑈 0

𝐹
.

The inductive case is similar, which gives us the proof of (2).
From𝑈 𝑖+1

𝐹
⊆ 𝑈 𝑖

𝐹
we have two cases

i. If 𝑈 𝑖+1
𝐹
⊂ 𝑈 𝑖

𝐹
then at the 𝑖-th iteration we have found more

specs and some function which didn’t have specs at iteration
𝑖−1 now got a spec. Hence we have a finite descending chain
of set of unspecced functions and therefore the algorithm
can be in this case a finite number of iterations.

ii. If𝑈 𝑖+1
𝐹

= 𝑈 𝑖
𝐹
then no new specced function have been found

and therefore the algorithm terminates (line 8 condition
𝑈𝐹 = 𝑈 ′

𝐹
holds).

□

Lemma 3.2. If both dynamic and static analyses are deterministic,
the stop criterion of Algorithm 1 gives the smallest 𝑈𝐹 set possible,
i.e., running more iterations would not increase coverage.

Proof. Let us assume that 𝑈𝐹 = 𝑈 ′
𝐹
but we do not stop the

algorithm. In this case,𝑈𝐹 will stay the same in the next iteration.
Assuming that the codebase also does not change, the dynamic
analysis will get the same inputs and hence will return the same
result (𝐷𝑈𝐹

and𝑊𝑑 ) as in the previous iteration. This results in the
same abstracted static specs (SDSpecs) and the same input to the
static analysis, which will return the same 𝑈 ′

𝐹
as in the previous

iteration. □

Note that in practice both dynamic and static analyses (including
FAUSTA and Infer) are often non-deterministic (e.g. random input
generation or internal resource limits) and therefore, it is possible
that there is no improvement in coverage for some iterations, but
after a while, we do get more specs. For example, if 𝑈 3

𝐹
⊂ 𝑈 2

𝐹
=

𝑈 1
𝐹
⊂ 𝑈 0

𝐹
then the algorithm would stop at 𝑈 2

𝐹
. The termination

criterion could be generalized to check for improvement over not
only one, but a given 𝑘 number of iterations, where 𝑘 could be fine
tuned based on experiments. However, in practice (as reported by
our experimental evaluations, Section 5), termination criteria based
on resources (such as CPU time or memory) also work well.

2This proof is based on the assumption that if a function has a spec at one iteration
and on the next iteration for some reason a spec is not computed we use the previous
spec. Or alternatively, if a function has a spec in one iteration then on later iteration
we don’t try to re-analyze it.
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4 Dynamic Models Abstraction
We have seen that dynamic summaries from observation of func-
tions I/O in real runs can be “too concrete”. For each function, the
dynamic analysis can observe and record thousands of such sum-
maries. Using them directly as specifications in static analysis is
not practical in general. There are two main reasons for that. First
of all performance: if a function 𝑓 has many specifications, then the
analysis of 𝑓 ’s callers would potentially result in many branches
that would slow down static analysis. Second, to avoid this problem,
Infer uses an upper bound on the number of specs utilized for a
function call. Having more specs above this limit reduces abruptly
the precision of the analysis. Consequently, it is better to have a
more compact representation of the information conveyed by the
dynamic summaries. To achieve that, we abstract the set 𝐷 𝑓 for
each function of interest (see line 5 of Algorithm 1).

Let D be the set of all dynamic specs and S the set of all static
specifications. Let ⊤ indicate a non-deterministic value, and for a
domain 𝐷 , let 𝐷⊤ be 𝐷 ∪ {⊤}.

In this section we will define the abstraction function

𝛼𝑆𝑝𝑒𝑐 : 2D → 2S (3)

abstracting a set of dynamic specifications to a set of static ones.
The abstraction function is defined for concrete Erlang states. It
is the composition of different kind of abstractions defined in the
following.

First we define an abstraction function

𝛼 : Σ→H
mapping concrete states to logic functions used in static specs. It is
defined as

𝛼 (𝜎) =
∧

𝑥∈𝑑𝑜𝑚 (𝜎 )
𝑥 = 𝛼𝑉 (𝜎 (𝑥), 0)

Informally, the logical formula is a conjunction of equalities: each
variable 𝑥 is equal its abstracted value defined by the abstraction
function 𝛼𝑉 .

The function 𝛼𝑉 : Vals × 𝑁 → Vals⊤ abstracts Erlang values.
The first argument is the value and the second (integer) argument
is a helper for keeping track of nesting (for lists and tuples). The
function is defined as:

𝛼𝑉 (𝑣, 𝑙) =


𝛼𝑁 (𝑣) if 𝑣 ∈ 𝑁
𝛼𝐴 (𝑣) if 𝑣 ∈ 𝐴
𝛼𝑙𝑖𝑠𝑡 (𝑣, 𝑙) if 𝑣 ∈ EL
𝛼𝑡𝑢𝑝𝑙𝑒 (𝑣, 𝑙) if 𝑣 ∈ ET
⊤ otherwise

Where 𝑁 , 𝐴, EL, ET represents Erlang numbers, atoms, lists and
tuples, respectively. We now define the per-type abstractions used
in 𝛼𝑉 . Let𝑁 [𝑝] be a set of the first 𝑝 natural numbers, i.e. {0, . . . , 𝑝}.
For integers we define 𝛼𝑁 : 𝑁 → 𝑁 [𝑝]⊤

𝛼𝑁 (𝑛) =
{
𝑛 if 0 ≤ 𝑛 ≤ 𝑝

⊤ otherwise
Informally, this means we only keep explicit the value of the first
𝑝 integers and treat the rest as unknown. In our experiments, we
observed that a good choice for parameter 𝑝 is to set it to 1 (i.e. only
tracking 0 and 1).

For Erlang atoms, we keep some special values explicit, whereas
the rest is abstracted away in with the non-deterministic value.

Let 𝐴 be the set of atoms and 𝐿𝐴 ⊆ 𝐴 a fixed set of atoms. Then
𝛼𝐴 : 𝐴→ 𝐿⊤

𝐴
is defined as:

𝛼𝐴 (𝑎) =
{
𝑎 if 𝑎 ∈ 𝐿𝐴
⊤ otherwise

In our implementation for Erlang the set of special atoms is

𝐿𝐴 = {false, true, timeout, return, error, exit, undefined}.
Erlang lists are abstracted in two dimensions: length and level

of nesting. Let EL be the set of Erlang lists and 𝑘,𝑚 ∈ 𝑁 , then
𝛼𝑙𝑖𝑠𝑡 : EL × 𝑁 → EL⊤ is defined as

𝛼𝑙𝑖𝑠𝑡 ( [𝑒1, . . . , 𝑒𝑛], 𝑙) =
[𝛼𝑉 (𝑒1, 𝑙 + 1), . . . , 𝛼𝑉 (𝑒𝑘 , 𝑙 + 1),⊤] if 𝑛 > 𝑘 and 𝑙 ≤ 𝑚
[𝛼𝑉 (𝑒1, 𝑙 + 1), . . . , 𝛼𝑉 (𝑒𝑛, 𝑙 + 1)] if 𝑛 ≤ 𝑘 and 𝑙 ≤ 𝑚
⊤ otherwise

In this definition𝑚 is a fixed constant which stands for the maxi-
mum nesting level we want to keep explicit. The constant 𝑘 is the
maximum number of elements per level that we want to keep ex-
plicit. Everything beyond that is abstracted to the non-deterministic
value ⊤. Also note that in the first line of the definition, the ⊤ as
the last element can represent an arbitrary number of elements at
the end of the list.

Erlang tuples are abstracted point-wise by abstracting their ele-
ments. Also for tuples we fix𝑚 as the maximum level of nesting we
preserve. Let ET be the set of Erlang tuples then 𝛼𝑡𝑢𝑝𝑙𝑒 : ET ×𝑁 →
ET⊤ is defined as

𝛼𝑡𝑢𝑝𝑙𝑒 (⟨𝑒1, . . . , 𝑒𝑛⟩, 𝑙) =
⟨𝛼𝑉 (𝑒1, 𝑙 + 1), . . . , 𝛼𝑉 (𝑒𝑘 , 𝑙 + 1)⟩ if 𝑙 ≤ 𝑚
⊤ otherwise

To state the sense in which 𝛼 is soundwe can define a concretization
function 𝛾 : H → 2Σ mapping logic formula into their semantics:

𝛾 (𝐻 ) = {𝜎 | 𝜎 |= 𝐻 }
With 𝛾 we can prove the following result.

Theorem 4.1. The abstraction function 𝛼 is sound, that is ∀𝜎 ∈
Σ : 𝜎 ∈ 𝛾 (𝛼 (𝜎)).

We can lift the abstraction function from states to dynamic sum-
maries in several ways.

𝛼
(
[𝜎𝐼 ] 𝑓 ( ®𝑥) [𝜎𝑂 ]

)
= {𝜎𝐼 } 𝑓 ( ®𝑥) {𝛼 (𝜎𝑂 )} (4)

𝛼
(
[𝜎𝐼 ] 𝑓 ( ®𝑥) [𝜎𝑂 ]

)
= {𝛼 (𝜎𝐼 )} 𝑓 ( ®𝑥) {𝜎𝑂 } (5)

𝛼
(
[𝜎𝐼 ] 𝑓 ( ®𝑥) [𝜎𝑂 ]

)
= {𝛼 (𝜎𝐼 )} 𝑓 ( ®𝑥) {𝛼 (𝜎𝑂 )} (6)

For an over-approximating static analysis, definition (4) would
preserve over-approximation, and would be sound. Whenever the
precondition is abstracted (definition (5) and (6)), there are no guar-
antees about preserving over- or under-approximation of the analy-
sis. In our implementation, we use definition (6). Despite this choice
may introduce false-positives, it is a heuristic consistent with an
already existing heuristic in Infer, which over-approximates the
behaviour of unknown functions in order to increase coverage (an
unknown function is one whose implementation is unavailable at
analysis time).

For our use-case, i.e. bug finding, we found that (6) is the most
useful for two reasons. First, during the analysis it provides a more
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𝐷 = {

[𝐸 ↦→ 6 ∗ 𝑋 ↦→ {0, 1, 2}]prepend(E, X) [𝐸 ↦→ {6, 0, 1, 2}]
[𝐸 ↦→ 7 ∗ 𝑋 ↦→ {6, 0, 1, 2}] prepend(E, X) [𝐸 ↦→ {7, 6, 0, 1, 2}],
[𝐸 ↦→ 8 ∗ 𝑋 ↦→ {7, 6, 0, 1, 2}] prepend(E, X) [𝐸 ↦→ {8, 7, 6, 0, 1, 2}],
[𝐸 ↦→ 9 ∗ 𝑋 ↦→ {8, 7, 6, 0, 1, 2}] prepend(E, X) [𝐸 ↦→ {9, 8, 7, 6, 0, 1, 2}]

}

𝛼𝑆𝑝𝑒𝑐 (𝐷) = {
[𝐸 ↦→ ⊤ ∗ 𝑋 ↦→ {0, 1,⊤}] prepend(E, X) [𝐸 ↦→ {⊤, 0,⊤}],
[𝐸 ↦→ ⊤ ∗ 𝑋 ↦→ {⊤, 0,⊤}] prepend(E, X) [𝐸 ↦→ {⊤,⊤,⊤}],
[𝐸 ↦→ ⊤ ∗ 𝑋 ↦→ {⊤,⊤,⊤}] prepend(E, X) [𝐸 ↦→ {⊤,⊤,⊤}],
[𝐸 ↦→ ⊤ ∗ 𝑋 ↦→ {⊤,⊤,⊤}] prepend(E, X) [𝐸 ↦→ {⊤,⊤,⊤}]

}
= {
[𝐸 ↦→ ⊤ ∗ 𝑋 ↦→ {0, 1,⊤}] prepend(E, X) [𝐸 ↦→ {⊤, 0,⊤}],
[𝐸 ↦→ ⊤ ∗ 𝑋 ↦→ {⊤, 0,⊤}] prepend(E, X) [𝐸 ↦→ {⊤,⊤,⊤}],
[𝐸 ↦→ ⊤ ∗ 𝑋 ↦→ {⊤,⊤,⊤}] prepend(E, X) [𝐸 ↦→ {⊤,⊤,⊤}]

}

Figure 1: An example of a set of concrete specifications and its abstraction.

compact representation for potentially thousands dynamic models,
limiting the amount of branches during analysis of the same func-
tion. Second, it increases the bug finding capabilities of the analysis
as models express more behaviours.

Join operator. After abstracting dynamic summaries into static
ones, we will end up with a large set of static specs. These can
still be reduced further by defining a join operator able to combine
together two summaries into one which summarize both of them.
A join operator is a partial function ⊎ : S × S ⇀ S. In our case,
the join operator we have implemented corresponds to the equality
relation between static summaries.

𝐻1 ⊎ 𝐻2 =

{
𝐻1 if 𝛾 (𝐻1) = 𝛾 (𝐻2)
undefined otherwise

In our case, join can be implemented directly with set inclusion.
Therefore we can define the abstraction function (3) mapping sets
of dynamic specifications onto sets of static specifications, and used
in the algorithm, as a combination of 𝛼 and the implicit join given
by set inclusion:

𝛼𝑆𝑝𝑒𝑐 (𝐷) = { {𝛼 (𝜎𝐼 )} 𝑓 ( ®𝑥) {𝛼 (𝜎𝑂 )} | [𝜎𝐼 ] 𝑓 ( ®𝑥) [𝜎𝑂 ] ∈ 𝐷 }

In our implementation using 𝛼𝑆𝑝𝑒𝑐 has resulted in dramatic reduc-
tion of the number of dynamic specs, often from thousands to few
units. We have observed that this abstraction improved speed and
precision of the analysis.

Example 4.2. Let’s consider again the set 𝐷 of concrete specifi-
cations from Section 3.1 shown on the top of Figure 1. Assuming
we abstract away numbers greater than 1 and we keep lists up to 2
elements, the resulting set of abstract specs 𝛼𝑆𝑝𝑒𝑐 (𝐷) is reported
in the bottom of Figure 1. Notice that join is obtain by set inclusion:
the last two elements of the abstract set are the same and therefore
combined into one single element in the final set.

5 Case Study: Analysing WhatsApp Erlang Code
In this section we report results of using the technique described in
this paper to enhance the analysis of privacy properties performed
by PrivacyCAT [23]. PrivacyCAT performs dynamic taint analysis
based on synthesized, realistic user inputs and traffic generation
(via tests , FAUSTA [24] and Sapienz [9]), and static taint analysis
based on Infer [6, 19]. It traces the propagation of synthesized
sensitive data, and its processing at data sinks and exchanging APIs
for leakage detection.

In Section 5.1 we present the results of continuous analysis at
WhatsApp within the existing PrivacyCAT workflows. Then, in
Section 5.2 we provide an in-depth analysis of specific runs dedi-
cated to assessing the isolated impact of dynamic data.

In both sections, the technique presented in this paper is used
to analyse the WhatsApp server codebase consisting of millions
of lines of Erlang code. Following, we provide details of our imple-
mentation of Algorithm 1. The static analysis component is Infer
with Erlang support (InfERL [19]) and the dynamic analysis com-
ponent is FAUSTA traffic generation [24]. The dynamic models are
extracted from FAUSTA’s runtime execution traces. The traces are
transformed into I/O pairs to be used as dynamic models provided
to Infer. The termination strategy is bound by dynamic traces size:
we stop when the size of all dynamic traces exceeds 10Gb.

5.1 Continuous Integration
WhatsApp has a robust Continuous Integration (CI) system in place
that includes a static analysis run based on Infer scheduled to occur
every hour. Continuous jobs perform deep analysis over the entire
repository on the most recent code version. This is designed to
complement the quicker diff-time static job, which is a lighter ver-
sion focused on the changes of each specific diff (i.e. a code change).
Using code analysis in CI aims to find privacy vulnerabilities in
WhatsApp code early in the development cycle, and to report them
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Figure 2: Dynamic models impact on static analysis.

to developers through a unified channel for fixes before the code
reaches production, and consequently affects users.

We have implemented the technique presented in this paper
and enhanced the hourly static analysis CI continuous workflow
of WhatsApp server Erlang codebase. We schedule a dynamically-
enhanced static analysis job in addition to the existing standard
static-only Infer job. The dynamic part consists of an ad-hoc FAUSTA
traffic generation run with targeted tracing enabled. Targeted trac-
ing is the collection of runtime data (input and output values) only
for calls to a given set of target Erlang functions. The target func-
tions we provide are those that had no summaries found by the
static-only Infer job on the same code version (i.e., the 𝑈𝐹 set in
Algorithm 1).

Since the first run of this strategy, the continuous CI job has
identified 92 issues within the first 6 months. These issues pre-
vented potential privacy site events (SEVs [14]) by early triaging
high-priority tasks to respective code owners. The issues were all in-
spected by the most appropriate human code owner, that if needed
decided necessary followups. This demonstrates the effectiveness of
our approach in identifying and addressing potential vulnerabilities
early in the development cycle.

5.2 Experiments
To evaluate the isolated benefit of dynamic data within static anal-
ysis we have conducted a set of experiments and in this section we
discuss results. The experiments were performed manually (outside
of WhatsApp CI) with verbose logging enabled to allow in-depth
analysis of metrics. For each experiment run, all steps involved
(Infer and FAUSTA) were fully executed from scratch on the same

code version without using any pre-existing data. The code ver-
sion was set to the most recent at the time of the experiment. The
analysis target is set for the entire repository.

5.2.1 Bugs reported. For this experiment, we have sampled 20 pairs
of runs on WhatsApp Erlang codebase with and without dynamic
summaries and we have made a comparison on their reported bugs.
Out of 20 runs, we have seen an increase of detected bugs in 16 cases
(80%), a decrease in 3 cases (15%), and no difference in 1 case (5%).
Note that these numbers correspond only to the bugs reported by
static analysis (𝑊𝑠 in Algorithm 1). That is, using dynamic analysis
does not only bring in new bugs itself, but also helps static analysis
to discover more.

An interesting result regards a particular TOPL property related
to taint analysis. When we initially formulated the property, Infer
reported no issues in the codebase but we suspected that there
might have been false negatives because most of the functions
related to the property could not be analyzed and the cascading
effect mentioned earlier in the paper was observed. We filled in the
missing summaries by providing them manually and then Infer did
start reporting issues. However, specifying summaries manually
requires lots of effort (we had to write dozens of these summaries)
and simply does not scale (we may need to keep writing manual
summaries for every new property). The combination of static and
dynamic analysis came to our rescue and was able to automatically
provide the needed summaries and find the same violations of the
property as when we provided the hand-written summaries.

5.2.2 Analysis of Static Coverage. We executed 25 pairs of runs
specifically designed to track static coverage improvements solely
provided by dynamic models. Static coverage here is defined as the
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number of functions that have at least one summary, i.e., that have
been analyzed by Infer. Results are reported in Fig. 2. All runs show
a static coverage increase when using dynamic models. Additional
coverage is already provided by the dynamic models (blue bars).
On top of that and more interestingly, we observed additional static
summaries (green bars) which could not be computed without the
help of dynamic models. We measured that each I/O pair provided
by dynamic analysis for 1 function contributed to an additional
static coverage of 2.1 functions on average - we call this the impact.

Our best run reported impact of 2.9 functions covered for each
dynamic model provided. Notably that run is the one with the least
amount of dynamic models. In fact, there is a reverse correlation
between the number of dynamic models and the impact. This led
us to the conclusion that some dynamic models are more impor-
tant than others, and thus running FAUSTA for longer in order to
gain additional dynamic models is not helping linearly in deriving
more static summaries. A quicker FAUSTA run already provides
substantial impact. This is an important conclusion about the ter-
mination strategy of Algorithm 1, therefore we keep this metrics
monitored in order to optimize the time spent on the dynamic run.
Depending on the context, further time spent on running dynamic
analysis might not be worth for the additional impact we can derive
from it. Further research on the best practical termination strat-
egy is required to enable better understanding on its impact over
performance.

6 Related Work
Combinations of dynamic and static code analysis techniques have
been used before.

Concolic testing [15] is mostly a dynamic technique (relying on
executing the program) but is aided by symbolic solving (which
is more commonly used in static analysis). In the first step, the
code under analysis is executed on some random input, and the
execution path is observed. Then, a formula is built saying that
a different decision is made at one of the branching points along
the execution path, and a symbolic solver is asked for some input
that satisfies this formula. Finally, the process is iterated, until
execution-path coverage is deemed sufficient. In this area, much of
the research effort goes into reducing the time needed to achieve a
certain path-coverage. (See, for example, [27].) Note that total time
is a combination of concrete (instrumented) execution time and
symbolic solving time. Unlike our case, concolic testing is mostly a
dynamic technique: it uses only some techniques typically used in
static analysis, but not a full-blown static analysis.

Dynamic symbolic execution [5] is a technique similar to concolic
testing, which tracks multiple executions at once. An idea explored
recently [4] was to combine dynamic symbolic execution with (clas-
sic, over-approximating) static analysis. The static analyzer helps
dynamic symbolic execution to be more efficient: a trace produced
by static analysis guides the space exploration of the symbolic exe-
cution. In turn, dynamic symbolic execution confirms that reports
of static analysis are not false positives, by finding concrete exe-
cutions exhibiting the bug. In this work, dynamic analysis helps
filter out false positives; in our work, dynamic analysis reduces the
number of false negatives. Still, this is the closest related work to
ours.

Like concolic testing, predictive monitoring is also a dynamic
analysis that uses some reasoning more commonly found in static
analysis, but not a full-blown static analysis. The main idea of pre-
dictive monitoring (also known as predictive runtime verification)
is to record dynamically one execution of a concurrent program,
and reason about other possible executions [10]. (One could argue
that reasoning about sets of executions is a typical approach in
static analysis.) The typical setting is that of sequential consistent
memory models. In this setting, one observes one interleaving, and
then reasons about all other interleavings that are allowed by the
observed lock operations (acquire/release). The basic property that
was studied in this context is the existence of data races. (This was
successful, for example, in finding bugs in the Linux kernel [17].)
There are, however, extensions to wider classes of properties, such
as regular languages [1].

Godefroid et al. [16] proposes an analysis that works at once with
over- and under-approximating summaries. The main idea there is
alternation: an under-approximating summary can help in comput-
ing an over-approximating one and vice versa. This kind of dual
reasoning was subsequently used for termination and nontermina-
tion [22] (sometimes with input from dynamic methods [21]) and
for deciding validity of logical formulas [26]. In our case, both the
static analysis and the dynamic analysis are under-approximating,
and they are not concerned with termination.

The idea of using dynamic analysis to improve the coverage of a
compositional under-approximating static analysis is novel.

7 Conclusions
In this paper we introduced a novel technique to improve composi-
tional static analysis by means of dynamic analysis. Our technique
is built on top of the Infer static analyzer and uses FAUSTA, a
dynamic analysis system for Erlang developed at Meta.

We have implemented our methodology and used for analysing
privacy properties of WhatsApp Erlang server code. The result
shows that enhancing Infer static analyzer with dynamic analysis
increases the software defects detected as well as it provides a
substantial increase on the number of analysed functions.
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